Matematyka

Oblicz w zeszycie. 4.4 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Matematyka
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Bożena Kiljańska, Adam Konstantynowicz
Wydawnictwo: Operon
Rok wydania:
ISBN: 9788378795285
Autor rozwiązania
user profile

Magda

5000

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Potęga o wykładniku naturalnym

Potęga to wielokrotne pomnożenie przez siebie takiego samego czynnika.


Potęgę liczby a o wykładniku n oznaczamy symbolem `a^n`, gdzie a to podstawa potęgi, n to wykładnik potęgi.  

Powyższa potęga oznacza, że dokonamy n - krotnego mnożenie czynnika a.

`a^n=#underbrace(a*a*...*a)_("n czynników")` 

Przykłady:

  • `3^4=3*3*3*3=81` 

  • `2^3=2*2*2=8`  

Gdy liczbę dodatnią lub ujemną podnosimy do potęgi parzystej, wówczas wynikiem będzie zawsze liczba dodatnia.

Gdy wykładnikiem potęgi liczby ujemnej będzie liczba nieparzysta to wynik będzie zawsze ujemny.

Przykłady:

  • `(-3)^6=3^6` 

  • `(-6)^5=-6^5`  

  • `(-1/2)^4=(1/2)^4` 

  • `(-1/7)^3=-(1/7)^3` 

Gdy podnosimy ułamek zwykły do danej potęgi, to wykonujemy oddzielnie potęgowanie dla licznika i mianownika. 

Przykłady

  • `(2/3)^2=2^2/3^2=4/9` 

  •  `(1/2)^4=1^4/2^4=1/16`  


Zapamiętaj:

  • `a^0=1 \ \ \ "dla" \ \ \ a!=0`  

  • `a^1=a`    
Iloczyn i iloraz potęg o tych samych podstawach

Mnożenie i dzielenie potęg o tych samych podstawach jest bardzo proste. Należy zapamiętać dwie proste zasady:

  1. Mnożenie - iloczynem dwóch potęg o tych samych podstawach jest potęga, której podstawa jest taka sama jak podstawy mnożonych potęg, a wykładnik jest sumą wykładników tych potęg.

    `a^m*a^n=a^(m+n)`  

  2. Dzielenie - ilorazem dwóch potęg o tych samych podstawach jest potęga, której podstawa jest taka sama jak podstawy dzielnej i dzielnika, a wykładnik jest różnicą wykładników tych potęg.

    `a^m:a^n=a^(m-n) \ \ \ \ "dla" \ \ \ a!=0` 
     

Przykłady:

  • `3^2*3^4=3^(2+4)=3^6` 

  • `(-5)^3*(-5)^2=(-5)^(3+2)=(-5)^5` 

  • `7^3:7=7^3:7^1=7^(3-1)=7^2`     

  • `4^8:4^5=4^(8-5)=4^3`   
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom