Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka z plusem 3 (Podręcznik, GWO)

Okrąg o środku S=(0, 5) i promieniu... 4.71 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Okrąg o środku S=(0, 5) i promieniu...

5
 Zadanie
6
 Zadanie
7
 Zadanie
8
 Zadanie
1
 Zadanie

2
 Zadanie

Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium.

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
Informacje
Autorzy: Praca zbiorowa
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Obliczanie odległości dwóch punktów
Obliczanie odległości dwóch punktów w układzie współrzędnych ogranicza się do korzystania z dość skomplikowanie wyglądającego wzoru:
$$|AB|=√{(x_2- x_1 )^2+(y_2-y_1 )^2}$$

Na szczęście wzór ten jedynie wygląda "groźnie", ponieważ aby go wyprowadzić wystarczy znajomość Twierdzenia Pitagorasa.

Przykład:

Mamy dwa punkty A(1,1) oraz B(4,5). Znajdźmy ich odległość.
img01
Dorysujmy linie pomocnicze:

img02

I szukaną odległość:

img03

Jak widać szukana odległość jest niczym innym jak przeciwprostokątną, oznaczmy boki:

img04

Zatem przypomnijmy Twierdzenie Pitagorasa:
$$a^2+b^2=c^2$$
C będzie naszym szukanym bokiem, czyli odcinkiem |AB|.

Jak znaleźć a i b? Tak samo jak na przykładowym rysunku, odejmujemy współrzędne punktu początkowego od końcowego dla każdego odcinka, więc dla $$A(1,1)$$ i $$B(4,5)$$ to po prostu:

$$a=4-1$$
$$b=5-1$$
czyli ostatecznie:
a=3
b=4

pozostaje nam obliczyć wzór:
$$3^2+4^2=c^2$$
$$9+16=c^2$$
$$c^2=25$$
$$c=5$$
$$c=|AB|=5$$

Uzyskaliśmy poprawny wynik nie korzystając z wymienionego na początku tematu wzoru, ale teraz czas z niego skorzystać.
Obliczenie za pomocą wzoru:
Skoro $$A(1,1)$$ to przy wzorze ogólnym na punkt $$A(x_1,y_1)$$ wartość
$$x_1=1$$
$$y_1=1$$
Skoro B(4,5) to:
$$x_2=4$$
$$y_2=5$$

Mamy wzór:

$$|AB|=√{(x_2- x_1 )^2+(y_2-y_1 )^2}$$

Podmieniamy litery na ich wartości:

$$|AB|=√{(4- 1)^2+(5-1)^2}$$
$$|AB|=√{3^2+4^2}$$
$$|AB|=√{25}$$
$$|AB|=5$$

 
Wzajemne położenie dwóch okręgów

Dwa okręgi mogą być:

  • rozłączne
  • przecinające się
  • styczne
  • współśrodkowe

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom