Matematyka

Matematyka z plusem 3 (Podręcznik, GWO)

Jaki obwód mają trójkąty, o których mowa powyższej ciekawostce? 4.62 gwiazdek na podstawie 13 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Jaki obwód mają trójkąty, o których mowa powyższej ciekawostce?

5
 Zadanie
6
 Zadanie
7
 Zadanie

8
 Zadanie

1
 Zadanie
2
 Zadanie
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
Maria

8 stycznia 2018
dzieki!!!!
user avatar
Karolina

23 grudnia 2017
dzięki :):)
Informacje
Autorzy: Praca zbiorowa
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Obliczanie odległości dwóch punktów
Obliczanie odległości dwóch punktów w układzie współrzędnych ogranicza się do korzystania z dość skomplikowanie wyglądającego wzoru:
$$|AB|=√{(x_2- x_1 )^2+(y_2-y_1 )^2}$$

Na szczęście wzór ten jedynie wygląda "groźnie", ponieważ aby go wyprowadzić wystarczy znajomość Twierdzenia Pitagorasa.

Przykład:

Mamy dwa punkty A(1,1) oraz B(4,5). Znajdźmy ich odległość.
img01
Dorysujmy linie pomocnicze:

img02

I szukaną odległość:

img03

Jak widać szukana odległość jest niczym innym jak przeciwprostokątną, oznaczmy boki:

img04

Zatem przypomnijmy Twierdzenie Pitagorasa:
$$a^2+b^2=c^2$$
C będzie naszym szukanym bokiem, czyli odcinkiem |AB|.

Jak znaleźć a i b? Tak samo jak na przykładowym rysunku, odejmujemy współrzędne punktu początkowego od końcowego dla każdego odcinka, więc dla $$A(1,1)$$ i $$B(4,5)$$ to po prostu:

$$a=4-1$$
$$b=5-1$$
czyli ostatecznie:
a=3
b=4

pozostaje nam obliczyć wzór:
$$3^2+4^2=c^2$$
$$9+16=c^2$$
$$c^2=25$$
$$c=5$$
$$c=|AB|=5$$

Uzyskaliśmy poprawny wynik nie korzystając z wymienionego na początku tematu wzoru, ale teraz czas z niego skorzystać.
Obliczenie za pomocą wzoru:
Skoro $$A(1,1)$$ to przy wzorze ogólnym na punkt $$A(x_1,y_1)$$ wartość
$$x_1=1$$
$$y_1=1$$
Skoro B(4,5) to:
$$x_2=4$$
$$y_2=5$$

Mamy wzór:

$$|AB|=√{(x_2- x_1 )^2+(y_2-y_1 )^2}$$

Podmieniamy litery na ich wartości:

$$|AB|=√{(4- 1)^2+(5-1)^2}$$
$$|AB|=√{3^2+4^2}$$
$$|AB|=√{25}$$
$$|AB|=5$$

 
Styczna do okręgu i okręgi styczne
Styczna jest to prosta, która styka się z okręgiem w dokładnie jednym punkcie i tworzy z promieniem kąt prosty. Typowa styczna do okręgu wygląda następująco:

img01

Okręgi mogą jeszcze być styczne między sobą, i to na dwa sposoby.
  1. Okręgi styczne zewnętrznie:

    img02

    Odległość środków to suma ich promieni.
     
  2. Okręgi styczne wewnętrznie:

    img03

    Odległością środków jest różnica promieni.
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom