Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka 2001 (Zbiór zadań, WSiP)

Przekrój osiowy walca jest kwadratem o boku równym 3 cm. Oblicz... 4.4 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Rysunek pomocniczy:



Obliczmy pole powierzchni tego walca:

`P= 2*pi*(1,5)^2+3pi*3= 2*pi*2,25+9pi= 4,5pi+9pi=13,5pi \ "[cm"^2"]"` 


Obliczmy objętość tego walca:

`V= pi*(1,5)^2*3=pi*2,25*3=6,75pi \ "[cm"^3"]"` 


Odp.: Pole powierzchni całkowitej tego walca wynosi `` `13,5pi \ "cm"^2`a objętość tego walca wynosi `6,75pi \ "cm"^3`.

DYSKUSJA
Informacje
Autorzy: Anna Dubiecka, Barbara Dubiecka-Kruk, Zbigniew Góralewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Ola

17616

Nauczyciel

Wiedza
Ostrosłup

Ostrosłup to bryła (figura przestrzenna), której:

  • podstawą jest dowolny wielokąt; 
     

Ściany boczne są trójkątami o wspólnym wierzchołku, który nosi nazwę wierzchołka ostrosłupa. 


 

Ostrosłup, tak jak graniastosłup, przyjmuje swoją nazwę od wielokąta, który jest jego podstawą.

Wysokość ostrosłupa (H) to odcinek łączący wierzchołek ostrosłupa z płaszczyzną podstawy i do niej prostopadły. 

Punkt wspólny wysokości i płaszczyzny podstawy to spodek wysokości


Ostrosłup prawidłowy
to taki ostrosłup, którego podstawą jest wielokąt foremny, a krawędzie boczne mają jednakową długość.

Ściany boczne ostrosłupa prawidłowego są przystającymi trójkątami równoramiennymi.


Ostrosłup trójkątny nazywamy czworościanem

Ostrosłup, którego wszystkie ściany są trójkątami równobocznymi nazywamy czworościanem foremnym.

prawidlowy

Ciekawostka

Piramida Cheopsa jest największym na świecie ostrosłupem prawidłowym czworokątnym. Ma 146 m wysokości, a krawędź jej podstawy ma długość 230 m. Na zbudowanie tej piramidy zużyto 2 300 000 bloków granitowych o ciężarze od 2,5 t do 15 t. Gdyby z tego materiału zbudować mur o wysokości 3 m i grubości 25 cm to opasałby on całą Polskę.

Ostrosłupy

Ostrosłup składa się z jednej podstawy, ścian bocznych i wierzchołka ostrosłupa. Punkt na podstawie, na który pada wysokość nazywamy spodkiem wysokości.

  Zobacz w programie GeoGebra

 

ostroslup

Ostrosłup, który ma w podstawie wielokąt foremny nazywamy ostrosłupem prawidłowym.

Ostrosłup prawidłowy trójkątny nosi również nazwę czworościan foremny. Wszystkie jego ściany są w kształcie trójkątów równobocznych.

Objętość ostrosłupa:

$$V=1/3 P_p×H$$

$$V$$ -> objętość ostrosłupa

$$P_p$$ -> pole podstawy

$$H$$ -> wysokość ostrosłupa

 

Pole powierzchni całkowitej ostrosłupa:

$$P_c=P_p+P_b$$

$$Pc$$ -> pole powierzchni całkowitej

$$P_p$$ -> pole podstawy

$$P_b$$ -> pole powierzchni bocznej (suma pól wszystkich ścian bocznych)

 
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom