Matematyka

MATeMAtyka 1. Zakres podstawowy i rozszerzony (Podręcznik, Nowa Era)

Oblicz 4.63 gwiazdek na podstawie 8 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

Skorzystamy z wyprowadzonych w poprzednim zadaniu wzorów. 

`(a+b)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4`

 

`(sqrt2+1)^4=sqrt2^4+4*sqrt2^3*1+6*sqrt2^2*1^2+4*sqrt2*1^3+1^4=`

`=4+4*2sqrt2*1+6*2*1+4*sqrt2*1+1=`

`=4+8sqrt2+12+4sqrt2+1=`

`=12sqrt2+17`

 

 

 

`(a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6`

 

`(sqrt2+1)^6=sqrt2^6+6*sqrt2^5*1+15*sqrt2^4*1^2+20*sqrt2^3*1^3+15*sqrt2^2*1^4+6*sqrt2*1^5+1^6=`

`=8+6*4sqrt2*1+15*4*1+20*2sqrt2*1+15*2*1+6*sqrt2*1+1=`

`=8+24sqrt2+60+40sqrt2+30+6sqrt2+1=`

`=70sqrt2+99`

DYSKUSJA
Informacje
MATeMAtyka 1. Zakres podstawowy i rozszerzony
Autorzy: Wojciech Babiański, Lech Chańko, Dorota Ponczek
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Koło i okrąg

Okrąg o środku S i promieniu długości r (r – to długość, więc jest liczbą dodatnią, co zapisujemy r>0) jest to krzywa, której wszystkie punkty leżą w tej samej odległości od danego punktu S zwanego środkiem okręgu.

Inaczej mówiąc: okręgiem o środku S i promieniu r nazywamy zbiór wszystkich punków płaszczyzny, których odległość od środka S jest równa długości promienia r.

okreg1
 

Koło o środku S i promieniu długości r to część płaszczyzny ograniczona okręgiem wraz z tym okręgiem.

Innymi słowy koło o środku S i promieniu długości r to figura złożona z tych punktów płaszczyzny, których odległość od środka S jest mniejsza lub równa od długości promienia r.

okreg2
 

Różnica między okręgiem a kołem – przykład praktyczny

Gdy obrysujemy np. monetę powstanie nam okrąg. Po zakolorowaniu tego okręgu powstanie nam koło, czyli zbiór punktów leżących zarówno na okręgu, jak i w środku.

okrag_kolo

Środek okręgu (lub koła) to punkt znajdujący się w takiej samej odległości od każdego punktu okręgu.
Promień okręgu (lub koła) to każdy odcinek, który łączy środek okręgu z punktem należącym do okręgu.

Cięciwa okręgu (lub koła) - odcinek łączący dwa punkty okręgu
Średnica okręgu (lub koła) - cięciwa przechodząca przez środek okręgu. Jest ona najdłuższą cięciwą okręgu (lub koła).

Cięciwa dzieli okrąg na dwa łuki.
Średnica dzieli okrąg na dwa półokręgi, a koło na dwa półkola.

kolo_opis
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Zobacz także
Udostępnij zadanie