Matematyka

Spróbuj obliczyć w pamięci. Pamiętaj o kolejności 4.71 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Spróbuj obliczyć w pamięci. Pamiętaj o kolejności

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie

6
 Zadanie

7
 Zadanie
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
Informacje
Matematyka 2001
Autorzy: Praca zbiorowa
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Monika

6245

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Odejmowanie pisemne
  1. Zapisujemy odjemną, a pod nią odjemnik, wyrównując ich cyfry do prawej strony.

    odejmowanie1
     
  2. Odejmowanie prowadzimy od strony prawej do lewej. Najpierw odejmujemy jedności, w naszym przykładzie mamy 3 - 9. Jeśli jedności odjemnej są mniejsze od jedności odjemnika (a tak jest w naszym przykładzie), wtedy z dziesiątek przenosimy jedną (lub więcej) „dziesiątkę” do jedności i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie wygląda to następująco: od 3 nie możemy odjąć 9, więc przenosimy (pożyczamy) jedną dziesiątkę z siedmiu dziesiątek i otrzymujemy 13 – 9 = 4, czyli pod cyframi jedności zapisujemy 4, a nad cyframi dziesiątek zapisujemy ilość dziesiątek które nam zostały czyli 6 (bo od siedmiu dziesiątek pożyczyliśmy jedną, czyli zostało nam sześć dziesiątek).

    odejmowanie2
     
  3. Odejmujemy dziesiątki, a następnie zapisujemy wynik pod cyframi dziesiątek. Gdy dziesiątki odjemnej są mniejsze od dziesiątek odjemnika, z setek przenosimy jedną (lub więcej) „setkę” do dziesiątek i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie mamy: 6 – 6 = 0, czyli pod cyframi dziesiątek zapisujemy 0.

    odejmowanie2
     
  4. Odejmujemy setki, a następnie wynik zapisujemy pod cyframi setek. Gdy setki odjemnej są mniejsze od setek odjemnika, z tysięcy przenosimy jeden (lub więcej) „tysiąc” do setek i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie mamy: 2 – 1 = 1, czyli pod cyframi setek zapisujemy 1.

    odejmowanie3
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik odejmowania pisemnego. W naszym przykładzie różnicą liczb 273 i 169 jest liczba 104.


Dla utrwalenia przeanalizujmy jeszcze jeden przykład odejmowania pisemnego.

Wykonamy pisemnie odejmowanie: 4071 - 956.

  1. Zapisujemy odjemną, a pod nią odjemnik.

    odejmowanie11
     
  2. Odejmujemy jedności: od 1 nie możemy odjąć 6, więc pożyczamy jedną dziesiątkę z siedmiu i otrzymujemy 11 – 6 = 5, czyli pod cyframi jedności zapisujemy 5, natomiast nad cyframi dziesiątek wpisujemy 6 (bo od siedmiu dziesiątek pożyczyliśmy jedną, czyli zostaje sześć dziesiątek).

    odejmowanie12
     
  3. Odejmujemy dziesiątki: 6 – 5 = 1, czyli pod cyframi dziesiątek wpisujemy 1.

    odejmowanie13
     
  4. Odejmujemy setki: od 0 nie możemy odjąć 9, więc pożyczamy jeden tysiąc i rozmieniamy go na 10 setek (bo jeden tysiąc to dziesięć setek) i otrzymujemy 10 – 9 = 1, czyli pod cyframi setek wpisujemy 1, a nad cyframi tysięcy wpisujemy 3, bo tyle tysięcy zostało.

    odejmowanie14
     
  5. Odejmujemy tysiące: w naszym przykładzie mamy 3 – 0 = 3 i wynik zapisujemy pod cyframi tysięcy.

    odejmowanie15
     
  6. Wynik naszego odejmowania: 4071 – 956 = 3115.

Prostopadłościan

Prostopadłościan to figura przestrzenna, której kształt przypomina pudełko lub akwarium.

Prostopadłościan

  • Każda ściana prostopadłościanu jest prostokątem.
  • Każdy prostopadłościan ma 6 ścian - 4 ściany boczne i 2 podstawy, 8 wierzchołków i 12 krawędzi.
  • Dwie ściany mające wspólną krawędź nazywamy prostopadłymi.
  • Dwie ściany, które nie mają wspólnej krawędzi, nazywamy równoległymi.
  • Każda ściana jest prostopadła do czterech ścian oraz równoległa do jednej ściany.

Z każdego wierzchołka wychodzą trzy krawędzie – jedną nazywamy długością, drugą – szerokością, trzecią – wysokością prostopadłościanu i oznaczamy je odpowiednio literami a, b, c. Długości tych krawędzi nazywamy wymiarami prostopadłościanu.

Prostopadłościan - długości

a – długość prostopadłościanu, b – szerokość prostopadłościanu, c - wysokość prostopadłościanu.

Prostopadłościan, którego wszystkie ściany są kwadratami nazywamy sześcianem.Wszystkie krawędzie sześcianu mają jednakową długość.

kwadrat
Zobacz także
Udostępnij zadanie