Matematyka

Matematyka 2001 (Podręcznik, WSiP)

Wyznaczcie miejsca zerowe funkcji 4.33 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Wyznaczcie miejsca zerowe funkcji

13
 Zadanie
14
 Zadanie
15
 Zadanie

16
 Zadanie

`"Miejsce zerowe funkcji to taki argument, dla którego funkcja przyjmuje wartość"\ 0"."`  

`"Wstawiamy do wzoru funkcji y"=0\ "i obliczamy wartość x."`

`"I." \ y=3x+2` 
`0=3x+2` 
`-2=3x` 
`x=-2/3` 

`"Miejsce zerowe funkcji to:"`
`x=-2/3` 
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`"II." \ y=7x+5` 
`0=7x+5` 
`-5=7x` 
`x=-5/7` 

`"Miejsce zerowe funkcji to:"`
`x=-5/7` 
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`"III." \ y=-9x+4` 
`0=-9x+4` 
`-4=-9x` 
`x=4/9` 

`"Miejsce zerowe funkcji to:"`
`x=4/9` 


`->`

`"Miejsce zerowe to liczba przeciwna do ilorazu wyrazu wolnego (b) i współczynnika kierunkowego (a)."`  

`"np. dla funkcji I:"`
`a=3`
`b=2` 

`b/a=2/3` 

`"Liczba przeciwna do tego ilorazu to:"`
`-b/a=-2/3` 

`"W efekcie otrzymujemy miejsce zerowe."`


`->`

`"Wzór na miejsce zerowe funkcji y"="ax"+"b to:"`
`y=ax+b, \ \ "gdy" \ \ a!=0`  
`"y"=0", gdyż miejsce zerowe to argument dla którego funkcja przyjmuje wartość"\ 0"."`
`0=ax+b` 
`"Z tego równania wyznaczamy x (miejsce zerowe)."`
`-b=ax` 
`x=-b/a`  

DYSKUSJA
Informacje
Matematyka 2001
Autorzy: Dubiecka-Kruk Barbara, Dubiecka Anna, Bazyluk Anna
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Zamiana ułamka zwykłego na dziesiętny

Jeżeli ułamek zwykły posiada w mianowniku 10, 100, 1000, … to zamieniamy go na ułamek dziesiętny w następujący sposób: między cyframi liczby znajdującej się w liczniku danego ułamka zwykłego stawiamy przecinek tak, aby po przecinku było tyle cyfr, ile zer w mianowniku. Gdyby zabrakło cyfr przy stawianiu przecinka, to należy dopisać brakującą ilość zer.

Przykłady:

  • $$3/{10}= 0,3$$ ← przepisujemy liczbę 3 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${64}/{100}= 0,64$$ ← przepisujemy liczbę 64 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${482}/{1000} = 0,482$$ ← przepisujemy liczbę 482 z licznika i stawiamy przecinek tak, aby po przecinku były trzy cyfry (bo w mianowniku mamy trzy zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${45}/{10}= 4,5$$ ← przepisujemy liczbę 45 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); w tym przypadku nie ma potrzeby dopisywania zer,

  • $${2374}/{100}= 23,74$$ ← przepisujemy liczbę 2374 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); w tym przypadku nie ma potrzeby dopisywania zer.

  Uwaga

Istnieją ułamki zwykłe, które możemy rozszerzyć lub skrócić tak, aby otrzymać w mianowniku 10, 100, 1000,... Jednak nie wszystkie ułamki można zamienić na równe im ułamki dziesiętne, to znaczy tak rozszerzyć lub skrócić, aby otrzymać ułamek o mianowniku 10, 100, 1000 itd.

Przykłady ułamków, które dają się rozszerzyć lub skrócić, tak aby otrzymać ułamek dziesiętny:
$$1/2= {1•5}/{2•5}=5/{10}= 0,5$$
$$3/{20}= {3•5}/{20•5}= {15}/{100}= 0,15$$
$${80}/{400}= {80÷4}/{400÷4}={20}/{100}= 2/{10}= 0,2$$

Nie można natomiast zamienić na ułamek dziesiętny ułamka $$1/3$$. Ułamka tego nie można skrócić ani rozszerzyć tak, aby w mianowniku pojawiła się liczba 10, 100, 1000 itd.

Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Zobacz także
Udostępnij zadanie