Matematyka

Zamień ułamek okresowy na ułamek zwykły. 4.8 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Joanna Czarnowska, Jolanta Wesołowska, Wojciech Babiański, Lech Chańko
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326715082
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Rozpoznawanie szeregów geometrycznych zbieżnych
Teraz, gdy już nauczyliśmy się liczyć granice różnych ciągów, możemy zająć się szeregami. Po wyjaśnieniu co to w ogóle jest przejdziemy do pytania, czy dany szereg jest zbieżny - i jeśli jest, to policzymy jego sumę.

Przed przejściem do rozwiązywania zadań trzeba wprowadzić trochę teorii:

Załóżmy, że mamy dany ciąg liczbowy $$(a_n)$$.
$$N$$-tą sumą częściową będziemy nazywali liczbę równą $$a_1+a_2+..+a_n = sum_1^n a_i$$.

Szeregiem nazwiemy ciąg, którego wyrazami są kolejne sumy częściowe, tzn:

$$S_0 = a_0$$
$$S_1 = a_0 + a_1$$
$$S_2 = a_0 + a_1+a_2$$
$$S_2 = a_0 + a_1+a_2+a_3$$
$$S_2 = a_0 + a_1+a_2+a_3+a_4$$

i tak dalej.

Sumę szeregu oznaczymy jako $$sum_1^{∞} a_i$$. Jeżeli ta suma istnieje (tzn. nie jest "nieskończona"), nazywamy ją zwykle $$S$$ i jest ona równa $$lim↙{n → ∞} S_n$$.

W tym rozdziale będziemy zajmowali się jedynie szeregami geometrycznymi, które dzięki dość prostej strukturze można dość łatwo przekształcać, ustalać, czy są zbieżne i liczyć ich sumy.

Szereg geometryczny to nic innego jak zwykły szereg (opisany powyżej), tyle tylko, że ciąg $$(a_n)$$ jest ciągiem geometrycznym. Szereg wygląda więc w ten sposób:
$$sum_1^{∞} S_i = a + qa + q^2a + q^3a ...$$

Z ciągami geometrycznymi spotkaliśmy się już wcześniej, więc jasne jest, jak powstają: kolejny wyraz jest po prostu poprzednim przemnożonym przez współczynnik $$q$$.

Przykładem takiego ciągu może być na przykład:
$$a_n = ({1}/{2})^n$$

Podajmy kilka jego pierwszych wyrazów:
$$a_0 = ({1}/{2})^0 = 1$$
$$a_1 = ({1}/{2})^1 = {1}/{2}$$
$$a_2 = ({1}/{2})^2 = {1}/{4}$$
$$a_3 = ({1}/{2})^3 = {1}/{8}$$

Jego sumy częściowe będą więc równe:
$$S_0 = 1$$
$$S_1 = 1 + {1}/{2}$$
$$S_2 = 1 + {1}/{2} + {1}/{4}$$
$$S_3 = 1 + {1}/{2} + {1}/{4} + {1}/{8}$$
$$S_4 = 1 + {1}/{2} + {1}/{4} + {1}/{8} + {1}/{16}$$

Skoro wiemy już, czym jest szereg geometryczny, pozostaje odpowiedzieć na pytanie: kiedy jest on zbieżny? Warunek jest prosty: wtedy, kiedy wartość bezwzględna ilorazu $$q$$ jest < 1. Jest to raczej logiczne: jeśli byłaby większa, to każdy następny składnik byłby większy, więc suma mogłaby być nieskończenie duża.

Pozostało jedynie przedstawić wzór na sumę takiego szeregu. Jak pamiętamy z rozdziału o ciągach geometrycznych ich suma wynosiła $$S = a{1-q^n}/{1-q}$$. Tutaj, ponieważ przechodzimy po prostu przez granicę n dążącego do nieskończonośći a $$|q|$$ < $$1$$, to oczywiście $$lim↙{n → ∞} q^n = 0$$ .
(Każdy kolejny wyraz jest $$q$$ razy mniejszy). We wzorze na sumę znika nam więc składnik $$q^n$$ i otrzymujemy:

$$S = {1}/{1-q}$$

Nasz przykładowy ciąg $$a_n$$ ma więc sumę równą:
$$S = {1}/{1-{1}/{2} } = 2$$

Ciekawostka: zagadnienie skończonej sumy nieskończonego ciągu było jednym z największych problemów matematyki starożytnej Grecji - istnieje znany paradoks żółwia i Achillesa mówiący o tym zagadnieniu. Aby przekonać się, że suma rzeczywiście jest skonczona, można to sprawdzić na rysunku:

4
Obliczanie granic ciągów
W niniejszej sekcji zajmiemy się obliczaniem granic ciągów korzystając z twierdzeń o granicach ciągów i granic znanych nam ze wcześniejszych lekcji.

Krótkie przypomnienie:

Fakt 1: granica ciągu w nieskończoności $$a_n = {1}/{n}$$ to $$0$$.

Fakt 2: Twierdzenie o granicach ciągów mówi, że jeśli mamy trzy ciągi: na przykład $$(a_n)$$, $$(b_n)$$ i $$(c_n)$$ i $$c_n= a_n + b_n$$, a $$lim↙{ → ∞} a_n = A$$ i $$lim↙{n → ∞} b_n = B$$, to $$lim↙{n → ∞} c_n = A+B$$. Oczywiście nie musi być tam dodawania: równie dobrze może być odejmowanie, mnożenie lub dzielenie.

To niepozorne i w miarę logiczne twierdzenie (skoro dodajemy każde dwa wyrazy dwóch ciągów i tworzymy z tych sum trzeci ciąg, a poprzednie zbiegały do jakichśtam granic, to ten będący sumą zbiega do granicy będącej sumą tamtych), to bardzo przydaje się w normalnych zastosowaniach: nie trzeba wtedy liczyć wszystkiego z definicji, a wystarczy po prostu skorzystać z granic znanych ciągów.

Inaczej mówiąc: jeśli mamy ciąg, którego wyrazy możemy w prosty sposób otrzymać z wyrazów znanych nam już ciągów (dodając je, mnożąc itp), to możemy próbować obliczyć granicę nowego ciągu korzystając jedynie z granic tamtych.

Dla przykładu obliczmy granicę w nieskończoności ciągu

$$b_n = {1}/{n^2}$$.

Zauważmy, że $$b_n = {1}/{n^2} = {1}/{n} × {1}/{n}$$. Skoro $$lim↙{n → ∞} b_n = a_n×a_n$$, to korzystając z twierdzenia o granicach ciągów otrzymujemy $$lim↙{n → ∞} b_n = lim↙{n → ∞} b_n = a_n × lim↙{n → ∞} a_n = 0×0 = 0$$

Obliczmy granicę innego ciągu:
$$p_n = {n^3 - 3n^2 + 2}/{2n^3 + 100n - 10}$$

Jest to bardzo często spotykany typ ciągów.

Ponieważ na razie zarówno mianownik, jak i licznik dążą do nieskończoności i nie da się tego stwierdzić od razu, musimy doprowadzić wzór do postaci, z której będziemy mogli wyodrębnić ciągi, których granice już znamy.

Podzielnmy więc obie strony ułamka przez $$n^3$$ - największą potęgę $$n$$ występującą we wzorze. Otrzymujemy:

$$p_n = {1 - 3{1}/{n} + 2{1}/{n^3} }/{2 + 100{1}/{n^2} + 10{1}/{n^3}}$$

Z tej postaci możemy już powiedzieć, do czego dąży każdy składnik:

1) Granicą $$1$$ i $$2$$ są po prostu $$1$$ i $$2$$.
2) Granicami wszystkich pozostałych ułamków są zera - dla $${1}/{n^2}$$ pokazywaliśmy to w poprzednim przykładzie.

Z twierdzenia o działaniach artytmetycznych na granicach możemy więc powiedzieć, że:

$$lim↙{n → ∞} p_n = lim↙{n → ∞} {1 - 3{1}/{n} + 2{1}/{n^3} }/{2 + 100{1}/{n^2} + 10{1}/{n^3} } = {(lim↙{n → ∞} 1) - (lim↙{n → ∞} 3{1}/{n}) + (lim↙{n → ∞} 2{1}/{n^3})}/{(lim↙{n → ∞} 2) + (lim↙{n → ∞} 100{1}/{n^2}) + lim↙{n → ∞} (10{1}/{n^3})} =$$
$$= {1 - 3×0 + 2×0}/{2 + 100×0 + 10×0} = {1}/{2}$$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom