Matematyka

MATeMAtyka 2. Zakres podstawowy i rozszerzony (Zbiór zadań, Nowa Era)

Oblicz pierwszy wyraz i iloraz q... 4.43 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

rownanie matematyczne 

rownanie matematyczne 

 

 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

 

 

 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

DYSKUSJA
Informacje
Autorzy: Joanna Czarnowska, Jolanta Wesołowska, Wojciech Babiański, Lech Chańko
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Obliczanie granic ciągów
W niniejszej sekcji zajmiemy się obliczaniem granic ciągów korzystając z twierdzeń o granicach ciągów i granic znanych nam ze wcześniejszych lekcji.

Krótkie przypomnienie:

Fakt 1: granica ciągu w nieskończoności $$a_n = {1}/{n}$$ to $$0$$.

Fakt 2: Twierdzenie o granicach ciągów mówi, że jeśli mamy trzy ciągi: na przykład $$(a_n)$$, $$(b_n)$$ i $$(c_n)$$ i $$c_n= a_n + b_n$$, a $$lim↙{ → ∞} a_n = A$$ i $$lim↙{n → ∞} b_n = B$$, to $$lim↙{n → ∞} c_n = A+B$$. Oczywiście nie musi być tam dodawania: równie dobrze może być odejmowanie, mnożenie lub dzielenie.

To niepozorne i w miarę logiczne twierdzenie (skoro dodajemy każde dwa wyrazy dwóch ciągów i tworzymy z tych sum trzeci ciąg, a poprzednie zbiegały do jakichśtam granic, to ten będący sumą zbiega do granicy będącej sumą tamtych), to bardzo przydaje się w normalnych zastosowaniach: nie trzeba wtedy liczyć wszystkiego z definicji, a wystarczy po prostu skorzystać z granic znanych ciągów.

Inaczej mówiąc: jeśli mamy ciąg, którego wyrazy możemy w prosty sposób otrzymać z wyrazów znanych nam już ciągów (dodając je, mnożąc itp), to możemy próbować obliczyć granicę nowego ciągu korzystając jedynie z granic tamtych.

Dla przykładu obliczmy granicę w nieskończoności ciągu

$$b_n = {1}/{n^2}$$.

Zauważmy, że $$b_n = {1}/{n^2} = {1}/{n} × {1}/{n}$$. Skoro $$lim↙{n → ∞} b_n = a_n×a_n$$, to korzystając z twierdzenia o granicach ciągów otrzymujemy $$lim↙{n → ∞} b_n = lim↙{n → ∞} b_n = a_n × lim↙{n → ∞} a_n = 0×0 = 0$$

Obliczmy granicę innego ciągu:
$$p_n = {n^3 - 3n^2 + 2}/{2n^3 + 100n - 10}$$

Jest to bardzo często spotykany typ ciągów.

Ponieważ na razie zarówno mianownik, jak i licznik dążą do nieskończoności i nie da się tego stwierdzić od razu, musimy doprowadzić wzór do postaci, z której będziemy mogli wyodrębnić ciągi, których granice już znamy.

Podzielnmy więc obie strony ułamka przez $$n^3$$ - największą potęgę $$n$$ występującą we wzorze. Otrzymujemy:

$$p_n = {1 - 3{1}/{n} + 2{1}/{n^3} }/{2 + 100{1}/{n^2} + 10{1}/{n^3}}$$

Z tej postaci możemy już powiedzieć, do czego dąży każdy składnik:

1) Granicą $$1$$ i $$2$$ są po prostu $$1$$ i $$2$$.
2) Granicami wszystkich pozostałych ułamków są zera - dla $${1}/{n^2}$$ pokazywaliśmy to w poprzednim przykładzie.

Z twierdzenia o działaniach artytmetycznych na granicach możemy więc powiedzieć, że:

$$lim↙{n → ∞} p_n = lim↙{n → ∞} {1 - 3{1}/{n} + 2{1}/{n^3} }/{2 + 100{1}/{n^2} + 10{1}/{n^3} } = {(lim↙{n → ∞} 1) - (lim↙{n → ∞} 3{1}/{n}) + (lim↙{n → ∞} 2{1}/{n^3})}/{(lim↙{n → ∞} 2) + (lim↙{n → ∞} 100{1}/{n^2}) + lim↙{n → ∞} (10{1}/{n^3})} =$$
$$= {1 - 3×0 + 2×0}/{2 + 100×0 + 10×0} = {1}/{2}$$
Rozpoznawanie szeregów geometrycznych zbieżnych
Teraz, gdy już nauczyliśmy się liczyć granice różnych ciągów, możemy zająć się szeregami. Po wyjaśnieniu co to w ogóle jest przejdziemy do pytania, czy dany szereg jest zbieżny - i jeśli jest, to policzymy jego sumę.

Przed przejściem do rozwiązywania zadań trzeba wprowadzić trochę teorii:

Załóżmy, że mamy dany ciąg liczbowy $$(a_n)$$.
$$N$$-tą sumą częściową będziemy nazywali liczbę równą $$a_1+a_2+..+a_n = sum_1^n a_i$$.

Szeregiem nazwiemy ciąg, którego wyrazami są kolejne sumy częściowe, tzn:

$$S_0 = a_0$$
$$S_1 = a_0 + a_1$$
$$S_2 = a_0 + a_1+a_2$$
$$S_2 = a_0 + a_1+a_2+a_3$$
$$S_2 = a_0 + a_1+a_2+a_3+a_4$$

i tak dalej.

Sumę szeregu oznaczymy jako $$sum_1^{∞} a_i$$. Jeżeli ta suma istnieje (tzn. nie jest "nieskończona"), nazywamy ją zwykle $$S$$ i jest ona równa $$lim↙{n → ∞} S_n$$.

W tym rozdziale będziemy zajmowali się jedynie szeregami geometrycznymi, które dzięki dość prostej strukturze można dość łatwo przekształcać, ustalać, czy są zbieżne i liczyć ich sumy.

Szereg geometryczny to nic innego jak zwykły szereg (opisany powyżej), tyle tylko, że ciąg $$(a_n)$$ jest ciągiem geometrycznym. Szereg wygląda więc w ten sposób:
$$sum_1^{∞} S_i = a + qa + q^2a + q^3a ...$$

Z ciągami geometrycznymi spotkaliśmy się już wcześniej, więc jasne jest, jak powstają: kolejny wyraz jest po prostu poprzednim przemnożonym przez współczynnik $$q$$.

Przykładem takiego ciągu może być na przykład:
$$a_n = ({1}/{2})^n$$

Podajmy kilka jego pierwszych wyrazów:
$$a_0 = ({1}/{2})^0 = 1$$
$$a_1 = ({1}/{2})^1 = {1}/{2}$$
$$a_2 = ({1}/{2})^2 = {1}/{4}$$
$$a_3 = ({1}/{2})^3 = {1}/{8}$$

Jego sumy częściowe będą więc równe:
$$S_0 = 1$$
$$S_1 = 1 + {1}/{2}$$
$$S_2 = 1 + {1}/{2} + {1}/{4}$$
$$S_3 = 1 + {1}/{2} + {1}/{4} + {1}/{8}$$
$$S_4 = 1 + {1}/{2} + {1}/{4} + {1}/{8} + {1}/{16}$$

Skoro wiemy już, czym jest szereg geometryczny, pozostaje odpowiedzieć na pytanie: kiedy jest on zbieżny? Warunek jest prosty: wtedy, kiedy wartość bezwzględna ilorazu $$q$$ jest < 1. Jest to raczej logiczne: jeśli byłaby większa, to każdy następny składnik byłby większy, więc suma mogłaby być nieskończenie duża.

Pozostało jedynie przedstawić wzór na sumę takiego szeregu. Jak pamiętamy z rozdziału o ciągach geometrycznych ich suma wynosiła $$S = a{1-q^n}/{1-q}$$. Tutaj, ponieważ przechodzimy po prostu przez granicę n dążącego do nieskończonośći a $$|q|$$ < $$1$$, to oczywiście $$lim↙{n → ∞} q^n = 0$$ .
(Każdy kolejny wyraz jest $$q$$ razy mniejszy). We wzorze na sumę znika nam więc składnik $$q^n$$ i otrzymujemy:

$$S = {1}/{1-q}$$

Nasz przykładowy ciąg $$a_n$$ ma więc sumę równą:
$$S = {1}/{1-{1}/{2} } = 2$$

Ciekawostka: zagadnienie skończonej sumy nieskończonego ciągu było jednym z największych problemów matematyki starożytnej Grecji - istnieje znany paradoks żółwia i Achillesa mówiący o tym zagadnieniu. Aby przekonać się, że suma rzeczywiście jest skonczona, można to sprawdzić na rysunku:

4
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom