Matematyka

Sprowadzono dwa ułamki do wspólnego mianownika i otrzymano ... 4.5 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Sprowadzono dwa ułamki do wspólnego mianownika i otrzymano ...

5
 Zadanie
6
 Zadanie

7
 Zadanie

1
 Zadanie
2
 Zadanie
3
 Zadanie

Najpierw skrócmy te ułamki: 

Podajemy

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup pakiet Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do zadania Sprowadzono dwa ułamki do wspólnego mianownika i otrzymano ... - Zadanie 7: Matematyka 5. Zeszyt ćwiczeń cz. 1 - strona 85
Pytanie do Autora

6 dni temu

Nie rozumiem o co w tym chodzi

komentarz do odpowiedzi Sprowadzono dwa ułamki do wspólnego mianownika i otrzymano ... - Zadanie 7: Matematyka 5. Zeszyt ćwiczeń cz. 1 - strona 85
Pytanie do Autora

6 dni temu

Wytłumacz mi sprowadzanie ułamków.

komentarz do rozwiązania Sprowadzono dwa ułamki do wspólnego mianownika i otrzymano ... - Zadanie 7: Matematyka 5. Zeszyt ćwiczeń cz. 1 - strona 85
Pytanie do Autora

6 dni temu

W jaki sposób sprawdzamy?

opinia do zadania Sprowadzono dwa ułamki do wspólnego mianownika i otrzymano ... - Zadanie 7: Matematyka 5. Zeszyt ćwiczeń cz. 1 - strona 85
Pytanie do Autora

6 dni temu

Dziękuję

klasa:
Informacje
Autorzy: Barbara Dubiecka-Kruk, Piotr Piskorski, Anna Dubiecka, Ewa Malicka
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302173059
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Sprowadzanie ułamków do wspólnego mianownika

Ułamki o różnych mianownikach można sprowadzić do postaci o jednakowych mianownikach.
W tym celu wystarczy rozszerzyć lub skrócić te ułamki (lub jeden z nich) tak, aby w mianowniku otrzymać taka samą liczbę (czyli właśnie ułamki o takich samych mianownikach).

Wspólnym mianownikiem może być wspólna wielokrotność dwóch liczb, będących mianownikami danych ułamków, lub najmniejsza wspólna wielokrotność danych mianowników.
Przykład: Sprowadźmy do wspólnego mianownika ułamki $$1/{12}$$ i $$3/{16}$$.

  1. I sposób
    Wspólnym mianownikiem może być wspólna wielokrotność liczb, będących mianownikami danych ułamków, czyli liczba $$12•16= 192$$.

    W tym przypadku rozszerzamy pierwszy ułamek przez 16, a drugi przez 12, tak aby oba ułamki miały ten sam mianownik (równy $$12•16$$).
    Następnie rozszerzamy ułamki przez 16 oraz 12:
    $$1/{12}= {1•16}/{12•16}= {16}/{192}$$
    $$3/{16}= {3•12}/{16•12}= {36}/{192}$$

  2. II sposób
    Wspólnym mianownikiem może być najmniejsza wspólna wielokrotność dwóch liczb, będących mianownikami danych ułamków, czyli NWW (12, 16).

    nww

    Wspólnym mianownikiem danych ułamków będzie liczba 48.
    $$1/{12}= {48÷12•1}/{48}= 4/{48}$$
    $$3/{16}= {48÷16•3}/{48}= 9/{48}$$

    Lub inaczej: pierwszy ułamek rozszerzamy przez 4 (bo $$12•4=48$$), a drugi przez 3 (bo $$16•3=48$$).
    $$1/{12}={1•4}/{12•4}= 4/{48}$$
    $$3/{16}={3•3}/{16•3}=9/{48}$$

Rozszerzanie i skracanie ułamków

Każdy ułamek możemy rozszerzyć poprzez pomnożenie zarówno licznika jak i mianownika przez dowolną liczbę różną od 0. Pamiętamy przy tym o dwóch zasadach:

  • Każda liczba pomnożona przez 0 da 0
  • Kreska ułamkowa zastępuje znak dzielenia, a przez 0 nie dzielimy

Przykłady rozszerzania ułamków:

  • $${3}/{5}={3×3}/{5×3}={9}/{15}$$
  • $${4}/{7}={4×5}/{7×5}={20}/{35}$$

Każdy ułamek możemy skrócić dzieląc zarówno licznik i mianownik przez liczbę, przez którą obie liczby są podzielne.

Przykłady skracania ułamków

  • $${6}/{10}={3}/{5}$$
  • $${8}/{32}={1}/{4}$$
  • $${14}/{7}=2$$

Uwaga!

Wynik ułamkowy zawsze sprowadzamy do postaci nieskracalnej! Możemy skracać lub rozszerzać część ułamkową w ułamku mieszanym.
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom