Matematyka

Sprowadź podane ułamki .. 4.54 gwiazdek na podstawie 24 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

a)    

 i   


 b)    

 i  


c)    

 i  

DYSKUSJA
user avatar
Patryk

9 kwietnia 2018
Dzieki za pomoc :):)
user avatar
Aneta

24 stycznia 2018
Dzięki za pomoc
user avatar
Kasia

8 stycznia 2018
dzięki!!!!
klasa:
Informacje
Autorzy: Barbara Dubiecka-Kruk, Piotr Piskorski, Anna Dubiecka, Ewa Malicka
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302173059
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Sprowadzanie ułamków do wspólnego mianownika

Ułamki o różnych mianownikach można sprowadzić do postaci o jednakowych mianownikach.
W tym celu wystarczy rozszerzyć lub skrócić te ułamki (lub jeden z nich) tak, aby w mianowniku otrzymać taka samą liczbę (czyli właśnie ułamki o takich samych mianownikach).

Wspólnym mianownikiem może być wspólna wielokrotność dwóch liczb, będących mianownikami danych ułamków, lub najmniejsza wspólna wielokrotność danych mianowników.
Przykład: Sprowadźmy do wspólnego mianownika ułamki $$1/{12}$$ i $$3/{16}$$.

  1. I sposób
    Wspólnym mianownikiem może być wspólna wielokrotność liczb, będących mianownikami danych ułamków, czyli liczba $$12•16= 192$$.

    W tym przypadku rozszerzamy pierwszy ułamek przez 16, a drugi przez 12, tak aby oba ułamki miały ten sam mianownik (równy $$12•16$$).
    Następnie rozszerzamy ułamki przez 16 oraz 12:
    $$1/{12}= {1•16}/{12•16}= {16}/{192}$$
    $$3/{16}= {3•12}/{16•12}= {36}/{192}$$

  2. II sposób
    Wspólnym mianownikiem może być najmniejsza wspólna wielokrotność dwóch liczb, będących mianownikami danych ułamków, czyli NWW (12, 16).

    nww

    Wspólnym mianownikiem danych ułamków będzie liczba 48.
    $$1/{12}= {48÷12•1}/{48}= 4/{48}$$
    $$3/{16}= {48÷16•3}/{48}= 9/{48}$$

    Lub inaczej: pierwszy ułamek rozszerzamy przez 4 (bo $$12•4=48$$), a drugi przez 3 (bo $$16•3=48$$).
    $$1/{12}={1•4}/{12•4}= 4/{48}$$
    $$3/{16}={3•3}/{16•3}=9/{48}$$

Najmniejsza wspólna wielokrotność

  Przypomnienie

Wielokrotność liczby to dana liczba pomnożona przez 1,2,3,4,5 itd. Inaczej mówiąc, wielokrotność liczby n to każda liczba postaci 1•n, 2•n, 3•n, 4•n, 5•n.

Przykład:
Wielokrotnością liczby 4 jest: - 4 bo 4=1•4;
- 8 bo 8=2•4;
- 12 bo 12=3•4;
- 16 bo 16=4•4;
- 20 bo 20=5•4;
itd...

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Najmniejszą wspólną wielokrotność dwóch liczb naturalnych a i b oznaczamy symbolem NWW(a, b).

W celu wyznaczenia najmniejszej wspólnej wielokrotności dwóch liczb wykorzystujemy rozkład tych liczb na czynniki pierwsze. Następnie najmniejsza wspólna wielokrotność jest równa iloczynowi wszystkich czynników pierwszych, przy czym dany czynnik pierwszy w iloczynie występuje tyle razy, ile razy występował w rozkładzie, w którym pojawił się najwięcej razy.

Przykład:
Wyznaczmy najmniejszą wspólną wielokrotność liczb 1848 i 180 Zaczynamy od rozłożenia tych liczb na czynniki pierwsze:

nww

W powyższych rozkładach wybieramy wszystkie liczby, które występowały w rozkładach, przy czym dany czynnik pierwszy w iloczynie występuje tyle razy, ile razy występował w rozkładzie, w którym pojawił się najwięcej razy – w powyższych rozkładach zaznaczono je kolorem czerwonym (i tak bierzemy liczbę 2 trzy razy, liczbę 3 dwa razy, liczbę 5 jeden raz, liczbę 7 jeden raz, liczbę 11 jeden raz). Najmniejsza wspólna wielokrotność jest iloczynem tych liczb.

$$NWW(1848, 180)=2•2•2•7•11•5•3•3=27 720$$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom