Matematyka

Sprowadź podane ułamki .. 3.64 gwiazdek na podstawie 11 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

a)    

 i   


 b)    

 i  


c)    

 i  

DYSKUSJA
opinia do odpowiedzi Sprowadź podane ułamki .. - Zadanie 5: Matematyka 5. Zeszyt ćwiczeń cz. 1 - strona 85
Patryk

9 kwietnia 2018
Dzieki za pomoc :):)
komentarz do odpowiedzi Sprowadź podane ułamki .. - Zadanie 5: Matematyka 5. Zeszyt ćwiczeń cz. 1 - strona 85
Aneta

24 stycznia 2018
Dzięki za pomoc
opinia do rozwiązania Sprowadź podane ułamki .. - Zadanie 5: Matematyka 5. Zeszyt ćwiczeń cz. 1 - strona 85
Kasia

8 stycznia 2018
dzięki!!!!
klasa:
Informacje
Autorzy: Barbara Dubiecka-Kruk, Piotr Piskorski, Anna Dubiecka, Ewa Malicka
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302173059
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Sprowadzanie ułamków do wspólnego mianownika

Ułamki o różnych mianownikach można sprowadzić do postaci o jednakowych mianownikach.
W tym celu wystarczy rozszerzyć lub skrócić te ułamki (lub jeden z nich) tak, aby w mianowniku otrzymać taka samą liczbę (czyli właśnie ułamki o takich samych mianownikach).

Wspólnym mianownikiem może być wspólna wielokrotność dwóch liczb, będących mianownikami danych ułamków, lub najmniejsza wspólna wielokrotność danych mianowników.
Przykład: Sprowadźmy do wspólnego mianownika ułamki $$1/{12}$$ i $$3/{16}$$.

  1. I sposób
    Wspólnym mianownikiem może być wspólna wielokrotność liczb, będących mianownikami danych ułamków, czyli liczba $$12•16= 192$$.

    W tym przypadku rozszerzamy pierwszy ułamek przez 16, a drugi przez 12, tak aby oba ułamki miały ten sam mianownik (równy $$12•16$$).
    Następnie rozszerzamy ułamki przez 16 oraz 12:
    $$1/{12}= {1•16}/{12•16}= {16}/{192}$$
    $$3/{16}= {3•12}/{16•12}= {36}/{192}$$

  2. II sposób
    Wspólnym mianownikiem może być najmniejsza wspólna wielokrotność dwóch liczb, będących mianownikami danych ułamków, czyli NWW (12, 16).

    nww

    Wspólnym mianownikiem danych ułamków będzie liczba 48.
    $$1/{12}= {48÷12•1}/{48}= 4/{48}$$
    $$3/{16}= {48÷16•3}/{48}= 9/{48}$$

    Lub inaczej: pierwszy ułamek rozszerzamy przez 4 (bo $$12•4=48$$), a drugi przez 3 (bo $$16•3=48$$).
    $$1/{12}={1•4}/{12•4}= 4/{48}$$
    $$3/{16}={3•3}/{16•3}=9/{48}$$

Najmniejsza wspólna wielokrotność (NWW)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest 15.
    1. Wypiszmy wielokrotności liczby 3 (różne od 0): 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...
    2. Wypiszmy wielokrotności liczby 5 (różne od 0): 5, 10, 15, 20, 25, 30, 35, ...
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.

  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest 12.
    1. Wypiszmy wielokrotności liczby 4 (różne od 0): 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...
    2. Wypiszmy wielokrotności liczby 6 (różne od 0): 6, 12, 18, 24, 30, 36, 42, 48, ...
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6. Jest to 12.


Najmniejszą wspólną wielokrotność dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWW dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn czynników pierwszej liczby oraz niezaznaczonych czynników drugiej liczby. 

Przykład:

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom