Matematyka

Autorzy:Jerzy Janowicz

Wydawnictwo:Nowa Era

Rok wydania:2016

Wykonaj działania 4.57 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

`a)\ (2x-y)(3x+2y)-(2x+y)(3x-2y)=` 

`\ \ \ =6x^2+4xy-3xy-2y^2-(6x^2-4xy+3xy-2y^2)=` 

`\ \ \ =6x^2+xy-2y^2-(6x^2-xy-2y^2)=` 

`\ \ \ =6x^2+xy-2y^2-6x^2+xy+2y^2=` 

`\ \ \ =2xy` 

 

`b)\ 5x[3(x-7)+6(x+8)]=` 

`\ \ \ =5x[3x-21+6x+48]=` 

`\ \ \ =5x[9x+27]=` 

`\ \ \ =45x^2+135x` 

 

`c)\ ((3x+6)(2y+8)-6xy)/6*(x+y)=` 

`\ \ \ =(3(x+2)*2*(y+4)-6xy)/6 *(x+y)=` 

`\ \ \ =(6*(x+2)(y+4)-6xy)/6*(x+y)=` 

`\ \ \ =((x+2)(y+4)-xy)*(x+y)=` 

`\ \ \ =(xy+4x+2y+8-xy)*(x+y)=` 

`\ \ \ =(4x+2y+8)*(x+y)=` 

`\ \ \ =4x^2+2xy+8x+4xy+2y^2+8y=` 

`\ \ \ =4x^2+6xy+8x+2y^2+8y` 

 

`d)\ [(x+1)(x+1)-(y-1)(y-1)]*(x^2+y^2+2x+2y)=` 

`\ \ \ =[x^2+2x+1-(y^2-2y+1)]*(x^2+y^2+2x+2y)=` 

`\ \ \ =(x^2+2x+1-y^2+2y-1)*(x^2+y^2+2x+2y)=` 

`\ \ \ =(x^2-y^2+2x+2y)*(x^2+y^2+2x+2y)=` 

`\ \ \ =x^4-x^2y^2+2x^3+2x^2y+x^2y^2-y^4+2xy^2+2y^3+` 

`\ \ \ +2x^3-2xy^2+4x^2+4xy+2x^2y-2y^3+4xy+4y^2=` 

`\ \ \ =x^4+4x^3+4x^2y+4x^2+8xy-y^4+4y^2`