Które z równań pozwoli obliczyć kwotę kredytu - Zadanie 2: Policzmy to razem 2 - strona 182
Matematyka
Policzmy to razem 2 (Podręcznik, Nowa Era)
Które z równań pozwoli obliczyć kwotę kredytu 4.38 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Które z równań pozwoli obliczyć kwotę kredytu

1
 Zadanie

2
 Zadanie

3
 Zadanie
4
 Zadanie
Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy II gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
II gimnazjum
Informacje
Autorzy: Jerzy Janowicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
średnia ważona

Średnia ważona różni się nieco od arytmetycznej. Oprócz samej sumy liczb do każdej z nich mamy przypisaną tzw. Wagę, która mówi nam jak bardzo ważna jest w naszej średniej dana liczba - częsty proceder na studiach czy w liceach.

Przykład:

kolokwium "waży" 30% czyli 0,3
egzamin "waży" 70% czyli 0,7

Wszystkie wagi muszą dać w sumie 1!
$0,3+0,7=1$

Załóżmy, że dostaliśmy z kolokwium ocenę 3, a z egzaminu ocenę 5, według średniej arytmetycznej mamy czyste 4. Jak to wygląda przy ważonej?

Waga oceny z kolokwium to:
$0,3$

Więc ocena to:
$0,3×3=0,9$

Waga z egzaminu: 0,7
Ocena:
$0,7×5=3,5$

Zatem razem mamy $3,5+0,9=4,4≈4,5$

Średnią ważoną stosują nawet nauczyciele matematyki, dlatego nawet 5 z kartkówek nie ratuje nas przed dwóją ze sprawdzianu i ocena jest niższa.

Ciąg arytmetyczny i jego suma
W tym temacie przekażemy Wam niezbędne informacje, w jaki sposób sprawdzić ile wynosi dowolny wyraz (piąty, szósty itd.) ciągu arytmetycznego, a także jak szybko policzyć sumę N wyrazów tego ciągu, na przykład 20 czy 40 wyrazów.

Pamiętamy, że ciąg arytmetyczny to taki, w którym pomiędzy jego wyrazami występuje stała różnica.

Wszystko omówimy na prostym przykładzie:
$a_n=2,4,6,8,10,x$

Widzimy, że jest arytmetyczny (stała różnica wynosi 2). Jednak nie znamy wartość x. Możemy bez liczenia odpowiedzieć, że wynosi 12. Jednakże znacznie trudniej jest to obliczyć w pamięci w bardziej skomplikowanych przypadkach.

$a_n=1/3, 1/{12}, -1/6, -5/{12},x$

W tym przykładzie nie będzie już tak prosto.
Musimy najpierw obliczyć różnicę. Skoro wiemy, że jest to ciąg arytmetyczny, wystarczy odjąć dwa dowolne sąsiednie wyrazy od siebie - weźmy trzeci oraz czwarty:

$r={-5}/{12} - (-1/6)$

$r={-5}/{12}+1/6$

$r={-5}/{12}+2/{12}$

$r={-3}/{12}={-1}/4$

Posiadamy już różnicę. Teraz przedstawiamy wzór na wartość dowolnego wyrazu ciągu arytmetycznego:

$a_n=a_1+(n-1)×r$

dla naszego x, czyli piątego wyrazu: $a_5=a_1+(5-1)×r$

Jak widzimy jest to podstawa ($a_1$) oraz 4 różnice ($(5-1)×r$).

$a_5=a_1+4×r$

$a_5=1/3+4×1/4=1/3+1=1 1/3 $

Pamiętajmy również o ważnej własności - wyraz środkowy jest średnią liczb sąsiednich, z czego wynika, że:

$a_{n-1}, a_n, a_{n+1}$ -> kolejne trzy wyrazy

$a_n={a_{n-1}+a_{n+1}}/2$
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom