Matematyka

Matematyka z plusem 3 (Zbiór zadań, GWO)

Pod jakimi kątami przecinają się proste k i l? 4.75 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Pod jakimi kątami przecinają się proste k i l?

1
 Zadanie
2
 Zadanie
3
 Zadanie

4
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Po przedłużeniu prostych k i l powstaje trójkąt. 

α - kąt przecięcia prostych k i l

 

`a)\ alpha=180^o-(68^o +70^o)=` `180^o-138^o=42^o` 

`b)\ alpha=180^o-(98^o +34^o)=` `180^o-132^o=48^o`  

`c)\ 180^o-115^o=65^o`              `180^o-121^o=59^o` 

       `alpha=180^o-(65^o +59^o)=` `180^o-124^o=` `56^o` 

DYSKUSJA
user profile image
Eryk

7 grudnia 2017
Dziękuję!
Informacje
Matematyka z plusem 3
Autorzy: Braun Marcin, Lech Jacek
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Paweł

12950

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Wielokrotności

Wielokrotność liczby to dana liczba pomnożona przez 1,2,3,4,5 itd.
Inaczej mówiąc, wielokrotność liczby n to każda liczba postaci 1•n, 2•n, 3•n, 4•n, 5•n ...

Przykłady:

  • wielokrotnością liczby 4 jest:
    • 4, bo $$4=1•4$$
    • 8, bo $$8=2•4$$
    • 12, bo $$12=3•4$$
    • 16, bo $$16=4•4$$
    • 20, bo $$20=5•4$$
       
  • wielokrotnością liczby 8 jest:
    • 8, bo $$8=1•8$$
    • 16, bo $$16=2•8$$
    • 24, bo $$24=3•8$$
    • 32, bo $$32=4•8$$
    • 40, bo $$40=5•8$$
Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Zobacz także
Udostępnij zadanie