Historia

Historia I (Podręcznik, GWO)

Przedstaw poglądy Greków na temat 4.43 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Historia

Przedstaw poglądy Greków na temat

16
 Zadanie
17
 Zadanie

1
 Zadanie

2
 Zadanie
3
 Zadanie

Starożytni Grecy uważali, że zanim powstał świat, panował Chaos - wielka pustka, wszechogarniająca nicość. Z chaosu wyłoniła się para bogów - Gaja (Ziemia) oraz Uranos (Niebo), którzy dali następnie życie innym bóstwom, zamieszkujacym wszechświat (kosmos). 

Wierzyli, że po śmierci, ponury starzec Charon przewozi zmarłych łodzią przez rzekę Styks, oddzielajacą świat żywych od świata zmarłych. Na straży Hadesu stał Cerber - potworny trzygłowy pies, który nie wpuszczał żywych ani zmarłych. Los zmarłych układał się w Hadesie bardzo różnie. Tylko wielcy bohaterowie zasłużyli sobie na beztroskie życie na Polach Elizejskich, w krainie wiecznej wiosny i szczęścia. Dla największych grzeszników przeznaczony był Tartar - najmroczniejsza i najniższa część podziemia, w której czekały na nich krwawe męki. 

DYSKUSJA
Informacje
Historia I
Autorzy: Tomasz Małkowski, Jacek Rześniowiecki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Paulina

10656

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dzielniki

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.

Inaczej mówiąc, dzielnikiem liczby naturalnej n nazywamy liczbę naturalną m, jeżeli liczba n podzieli się przez m, tzn. gdy istnieje taka liczba naturalna k, że $$n=k•m$$.

Przykład:

10 dzieli się przez 1, 2, 5 i 10, z tego wynika, że dzielnikami liczby 10 są liczby 1, 2, 5 i 10.

Możemy też powiedzieć, że:

  • 1 jest dzielnikiem 10 bo 10=10•1
  • 2 jest dzielnikiem 10 bo 10=5•2
  • 5 jest dzielnikiem 10 bo 10=2•5
  • 10 jest dzielnikiem 10 bo 10=1•10


Jeżeli liczba naturalna m jest dzielnikiem liczby n, to liczba n jest wielokrotnością liczby m.

Przykład:
Liczba 2 jest dzielnikiem liczby 10, czyli liczba 10 jest wielokrotnością liczby 2.
Symboliczny zapis $$m∣n$$ oznacza, że m jest dzielnikiem liczby n (lub n jest wielokrotnością liczby m). Powyższy przykład możemy zapisać jako $$2|10$$ (czytaj: 2 jest dzielnikiem 10).


Dowolna liczba naturalna n, większa od 1 (n>1), która ma tylko dwa dzielniki: 1 oraz samą siebie (czyli liczbę n) nazywamy liczbą pierwszą. Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23...

  Zapamiętaj

Liczba 1 nie jest liczbą pierwszą – bo ma tylko jeden dzielnik. Liczba 0 też nie jest liczbą pierwszą – bo ma nieskończenie wiele dzielników.

  Zapamiętaj

Liczbę niebędącą liczbą pierwszą, czyli posiadająca więcej niż dwa dzielniki, nazywamy liczbą złożoną. Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18...

  Zapamiętaj

Liczby 1 i 0 nie są liczbami złożonymi.

  Ciekawostka

Liczba doskonała to liczba, która jest równa sumie wszystkich swoich dzielników mniejszych od niej. Dotychczas znaleziono tylko 46 liczb doskonałych. Przykładem liczby doskonałej jest 6.

Dzielenie z resztą

Na początek zapoznajmy się z twierdzeniem o dzieleniu z resztą, które brzmi następująco:
"Dla pary liczb całkowitych a i b (gdzie b ≠ 0) istnieją liczby całkowite q i r, dla których spełnione jest równanie a = qb + r, gdzie 0 ≤ r < │b│. Liczby q i r nazywa się odpowiednio ilorazem i resztą z dzielenia a przez b."

Innymi słowy, dzielenie z resztą to takie dzielenie, w którym iloraz nie jest liczbą całkowitą.

Przykład obliczania reszty z dzielenia:

  1. Podzielmy liczbę 23 przez 3.
  2. Wynikiem dzielenia nie jest liczba całkowita (nie dzieli się równo). Maksymalna liczba trójek, które zmieszczą się w 23 to 7.
  3. $$7 • 3 = 21$$
  4. Różnica między liczbami 23 i 21 wynosi 2, zatem resztą z tego dzielenia jest liczba 2.
  5. Poprawny zapis działania: $$21÷3=7$$ $$r.2$$

Przykłady:

  • $$5÷2=2$$ r. 1
  • $$27÷9=3$$ r. 0
  • $$(-8)÷(-3)=3 r. 1$$
  • $$(-15)÷4=-3$$ .r -3 lub $$(-15)÷4=-4$$ r. 1

  Zapamiętaj

Reszta jest zawsze mniejsza od dzielnika.

Zobacz także
Udostępnij zadanie