Historia

Bliżej historii 3 2013 (Podręcznik, WSiP)

Charakterystyka przywódców przewrotu bolszewickiego 4.6 gwiazdek na podstawie 10 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Historia

Charakterystyka przywódców przewrotu bolszewickiego

1
 Zadanie
2
 Zadanie

Tekst źródłowy
 Zadanie

1. Na podstawie tekstu wymień cechy bolszewika.

  • brak wykształcenia, płytkość umysłu - "nie ma nic niebezpieczniejszego ponad to, gdy pewna idea ogólna (...) wciśnie się do mózgu małego i ciasnego";
  • nieczuły na życie ludzie - "bolszewik (...) życie ludzkie mało waży";
  • brak poszanowania dla mienia ludzkiego oraz własności prywatnej, którą uważa za swoją - "ludzkie mienie nie istnieją dla niego, albowiem uważa je za wspólne";
  • zminy, otępiały, nieporuszony - " jeśli sprzeciwicie się jego woli, jesteście prostymi zbrodniarzami, których stawia się pod murem i rozstrzeliwuje";

 

DYSKUSJA
user profile image
Bruno

11 kwietnia 2018
dzięki :)
user profile image
Aga

2 kwietnia 2018
Dzięki
Informacje
Autorzy: Igor Kąkolewski,Anita Plumińska-Mieloch,Krzysztof Kowalewski
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Paulina

45133

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $$1/{10}= 0,1$$
  • $$2/{100}= 0,02$$
  • $${15}/{100}= 0,15$$
  • $$3/{1000}= 0,003$$
  • $${25}/{10}= 2,5$$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Zobacz także
Udostępnij zadanie