Przedstaw przebieg reformacji w Polsce. - Zadanie 1: Śladami przeszłości 2 - strona 206
Historia
Wybierz książkę
Przedstaw przebieg reformacji w Polsce. 4.55 gwiazdek na podstawie 11 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Historia

Przedstaw przebieg reformacji w Polsce.

1
 Zadanie

2
 Zadanie
3
 Zadanie

Przebieg reformacji w Polsce:

  • Reformacja, która na początku XVI wieku rozwinęła się w Europie Zachodniej, szybko dotarła także do Polski. Nowe idee zyskały wielu zwolenników wśród mieszkańców Rzeczypospolitej już za panowania Zygmunta I Starego. Podobnie jak w Europie występowano przeciwko nepotyzmowi oraz symonii. Podważano uprzywilejowaną pozycję duchowieństwa, które było nisko opodatkowane, a pobierało od wiernych wysokie opłaty (dziesięciny). Kler lekceważył swoje obowiązki, gorliwie pomnażając dobra materialne, prowadząc niejednokrotnie niemoralny tryb życia.
Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
opinia do rozwiązania undefined
Sylwia

9 maja 2018
Dzięki za pomoc :):)
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Stanisław Roszak
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Paulina

74532

Nauczyciel

Wiedza
Mnożenie i dzielenie

Kolejnymi działaniami, które poznasz są mnożenie i dzielenie.

  1. Mnożenie to działanie przyporządkowujące dwóm liczbom a i b liczbę c = a•b (lub a×b). Mnożone liczby nazywamy czynnikami, a wynik mnożenia iloczynem.

    mnożenie liczb

    Mnożenie jest:

    1. przemienne (czynniki można zamieniać miejscami) , np. 3 • 2 = 2 • 3
    2. łączne (gdy mamy większą liczbę czynników możemy je mnożyć w dowolnej kolejności),
      np. $(3 • 5) • 2 = 3 • (5 • 2)$
    3. rozdzielne względem dodawania i odejmowania
      np. 2 • (3 + 4) = 2 • 3 + 2 • 4
      2 • ( 4 - 3) = 2 • 4 - 2 • 3
      Wykorzystując łączność mnożenia można zdecydowanie łatwiej uzyskać iloczyn np.: 4 • 7 • 5 = (4 • 5) • 7 = 20 • 7 = 140
  2. Dzielenie
    Podzielić liczbę a przez b oznacza znaleźć taką liczbę c, że $a = b • c$, np. $12÷3 = 4$, bo $12 = 3 • 4$.
    Wynik dzielenia nazywamy ilorazem, a liczby odpowiednio dzielną i dzielnikiem.

    dzielenie liczb

    Dzielenie podobnie jak odejmowanie nie jest ani przemienne, ani łączne
     

  Ciekawostka

Znak x (razy) został wprowadzony w 1631 przez angielskiego matematyka W. Oughtreda, a symbol ͈„•” w 1698 roku przez niemieckiego filozofa i matematyka G. W. Leibniz'a.

Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $5•5=5^2 $, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $7•7•7=7^3$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $3•3•3•3•3=3^5 $, czytamy: „trzy do potęgi piątej”

    $2•2•2•2•2•2•2=2^7 $, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2822ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6533WIADOMOŚCI
NAPISALIŚCIE742KOMENTARZY
komentarze
... i8368razy podziękowaliście
Autorom