Korzystając z dostępnych źródeł, scharakteryzuj... - Zadanie 7: Polska 7 - strona 44
Geografia
Polska 7 (Podręcznik, Wiking)
Korzystając z dostępnych źródeł, scharakteryzuj... 4.6 gwiazdek na podstawie 5 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Geografia

Korzystając z dostępnych źródeł, scharakteryzuj...

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie
6
 Zadanie

7
 Zadanie

Jest to zadanie indywidualne, które należy rozwiązać dla regionu, w którym mieszkasz. Poniżej przykładowe rozwiązanie dla Niziny Mazowieckiej.

Średnie temperatury stycznia na Nizinie Mazowieckiej wynoszą od około -4,5oC do -3oC, natomiast w lipcu są one znacznie wyższe i kształtują się na poziomie około 18oC.

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 7 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
7 szkoły podstawowej
Informacje
Autorzy: Edward Dudek, Robert Wers, Jan Wójcik
Wydawnictwo: Wiking
Rok wydania:
ISBN: 9788388323997
Autor rozwiązania
user profile

Damian

33788

Nauczyciel

Wiedza
Permutacje
Załóżmy, że mamy ciąg $n$ liczb, od $0$ do $n-1$. Chcielibyśmy wiedzieć, na ile sposobów da się postawić te liczby w ciągu, czyli poznać liczbę wszystkich jego permutacji.

Zauważmy, że pierwszy element możemy wybrać na $n$ sposobów. Drugi element: na $n-1$, trzeci: na $n-2$ i tak dalej. Wymnażając wszystkie te liczby otrzymujemy iloczyn $1×2×3×4×...×(n-1)×n$, który oznacza się symbolem $n!$ i nazywamy "silnią". Warto wspomnieć, że możemy ją także zdefiniować rekurencyjnie, jako ciąg $n! = (n-1)!×n$ i $0! = 1$.
 
Suma i różnica kątów
W rozwiązywaniu zadań często przydają się wzory pozwalające rozbić funkcję sumy kątów na wyrażenie zawierające te kąty oddzielnie.

$sin (x+y) = sin(x) cos(y) + sin(y) cos(x)$
$sin (x-y) = sin(x) cos(y) - sin(y) cos(x)$
$cos (x+y) = cos x cos y - sin y sin x$
$cos (x+y) = cos x cos y + sin y sin x$

Mimo że znajdują się one w tablicach, mocno polecam ich zapamiętanie. Dlaczego? Ponieważ możemy potrzebować użyć ich "odwrotnie" - to znaczy zamiast mieć wyrażenie i rozwijać je z tego wzoru możemy mieć za zadanie dostrzec wzór i "zwinąć" go do wyrażenia.

Pozostaje jeszcze wspomnieć o przypadkach szczególnych, gdy $x=y$.
Wtedy wzory przyjmują postać:

$sin 2x = 2 sin x cos x$ $cos 2x = cos x^2 - sin x^2$ i korzystając z jedynki trygonometrycznej:

$cos 2x = 1 - 2 sin x^2$
$cos 2x = 2 cos x^2 - 1$


Te wzory już obowiązkowo trzeba umieć na pamięć: w zadaniach równie często trzeba przechodzić z lewej na prawą jak z prawej na lewą stronę równania.

Teraz kolej na tangens i cotangens:
$ an (x+y) = { an x + an y}/{1- an x an y}$ $ an (x-y) = { an x - an y}/{1+ an x an y}$ $ctg (x+y) = {ctg x ctg y - 1}/{ctg x + ctg y}$

$ctg (x+y) = {ctg x ctg y + 1}/{ctg x - ctg y}$

Jak widać wzory te są bardzo do siebie podobne i skoro na maturze dostępne są tablice, to nie trzeba tak naprawdę zapamiętywać tego, gdzie jest + a gdzie -, ponieważ zawsze możemy to sprawdzić. Należy natopmiast trzymać w pamięci ogólną postać takiego wzoru, abyśmy mogli zauważyć odwrotność tego wzoru - jeśli ją znajdziemy, szczegółów możemy poszukać na karcie wzorów.
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom