Z fizyką w przyszłość. Zbiór zadań. Zakres rozszerzony. Część 1 (Zbiór zadań, ZamKor / WSiP )

Asia porusza się ze stałą szybkością na karuzeli o promieniu... 5.0 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Fizyka

Asia porusza się ze stałą szybkością na karuzeli o promieniu...

1.58
 Zadanie

1.59
 Zadanie
1.60
 Zadanie
1.61
 Zadanie
1.62
 Zadanie

Wypiszmy dane podane w zadaniu:

`r=1,5\ m` 

`a_r=8\ m/s^2` 

 

Wiemy, że wzór na przyspieszenie dośrodkowe ma postać:

`a_r=v^2/r` 

Możemy z powyższego wzoru wyznaczyć prędkość liniową:

`a_r=v^2/r\ \ \ \ |*r` 

`a_r*r=v^2` 

Zamieniamy stronami i pierwiastkujemy:

`v=sqrt(a_r*r)` 

Wiemy, że wzór na prędkość liniową ma postać:

 `v=omega*r` 

 

gdzie ω jest prędkością kątową. Wówczas możemy zapisać, że:

`omega=v/r` 

`omega =(sqrt(a_r*r))/r` 

`omega = sqrt((a_r*r)/r^2)` 

`omega =sqrt(a_r/r)` 

Otrzymaliśmy wzory na prędkość liniową i kątową:

`v=sqrt(a_r*r)` 

`omega=sqrt(a_r/r)` 

Podstawiamy dane liczbowe do wzoru:

`v=sqrt(8\ m/s^2*1,5\ m) = sqrt(12\ m^2/s^2) = 3,4641\ m/s~~3,46\ m/s` 

`omega = sqrt((8\ m/s^2)/(1,5\ m)) = sqrt(5,333\ 1/s^2) = 2,3093\ "rad"/s = 2,3\ "rad"/s` 

DYSKUSJA
user profile image
Adriana

27 października 2017
Dziękuję :)
user profile image
Kamil

7 października 2017
Dziękuję!
Informacje
Z fizyką w przyszłość. Zbiór zadań. Zakres rozszerzony. Część 1
Autorzy: Agnieszka Bożek, Katarzyna Nessing, Jadwiga Salach
Wydawnictwo: ZamKor / WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
System rzymski

System rzymski jest systemem zapisywania liczb, który w przeciwieństwie do zapisu pozycyjnego, pozwala zapisać liczby przy pomocy znaków o zawsze ustalonej wartości.

Wyróżniamy cyfry podstawowe:

  • I = 1
  • X = 10
  • C = 100
  • M = 1000

oraz cyfry pomocnicze:

  • V = 5
  • L = 50
  • D = 500

Korzystając z systemu rzymskiego liczbę naturalną przedstawiamy jako ciąg powyższych cyfr uporządkowanych od wartości największej do najmniejszej, a wartość liczby jest równa sumie wartości poszczególnych cyfr.

Przykłady:

  • XV → 10+5=15
  • XXXII → 10+10+10+1+1=32
  • CXXVII → 100+10+10+5+1+1=127
  • MDLVII → 1000+500+50+5+1+1=1557

W celu uproszczenia wielu zapisów dopuszcza się umieszczenie cyfry podstawowej o mniejszej wartości przed cyfrą o większej wartości. W takim jednak przypadku wartość mniejszej cyfry uważamy za ujemną.

Przykłady:

  • IX → -1+10=10-1=9
  • CD → -100+500=500-100=400
  • XLII → -10+50+1+1=50-10+2=42
  • CML → -100+1000+50=1000-100+50=950

Ważne jest, że w systemie rzymskim możemy zapisać maksymalnie 3 takie same cyfry podstawowe (czyli I, X, C, M) obok siebie. Cyfry pomocnicze (czyli V, L, D) nie mogą występować obok siebie.

Przykład:

  • XXXII → 10+10+10+1+1=32

  Ciekawostka

System rzymski pochodzi od wysoko rozwiniętej cywilizacji Etrusków (ok. 500 r. p.n.e.). Początkowo zapisywano liczby za pomocą pionowych kresek I,II,III,IIII,IIIII,... .

Rzymianie przejęli cyfry od Etrusków i poddali je pewnym modyfikacjom oraz udoskonaleniom, co dało początki dzisiaj znanemu systemowi rzymskiemu.

Cyfr rzymskich używano na terenie imperium aż do jego upadku w V w. n.e. W średniowieczu stały się standardowym systemem liczbowym całej łacińskiej Europy, jednak pod koniec tej epoki coraz częściej używano już cyfr arabskich, prostszych i wygodniejszych do obliczeń oraz zapisywania dużych liczb. System rzymski stopniowo wychodził z codziennego użycia, chociaż do dziś jest powszechnie znany w Europie i stosowany do wielu celów.

Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Zobacz także
Udostępnij zadanie