To jest chemia 1. Maturalne karty pracy. Zakres rozszerzony (Podręcznik, Nowa Era)

Poniżej przedstawiono układy, w których podczas 4.57 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Chemia

Poniżej przedstawiono układy, w których podczas

14
 Zadanie

15
 Zadanie

a) Fałsz, ponieważ nie jest powiedziane, czy układ jest zamknięty czy nie, jeśli byłby zamknięty, to wtedy byłaby to prawda, gdyż w wyniku reakcji powstają gazy, które mogą wykonać pracę objętościową

b) Fałsz, ponieważ jest to reakcja entodermiczna, czyli energia substratów jest mniejsza niż energia produktów

c) Prawda, ponieważ w układzie I `DeltaH<0`  a w układzie II `DeltaH>0`  

d) Prawda, ponieważ jest to wykres dla reakcji egzotermicznej

e) Fałsz, ponieważ w II układzie  `DeltaH>0`  

f) Prawda, ponieważ układ I, to teakcja egzotermiczna

DYSKUSJA
user profile image
Irena

17-12-2017
dzięki
user profile image
darek

07-10-2017
Dzięki!
Informacje
To jest chemia 1. Maturalne karty pracy. Zakres rozszerzony
Autorzy: Małgorzata Chmurska, Elżbieta Megiel, Grażyna Świderska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Odejmowanie ułamków dziesiętnych

Odejmowanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do odejmowania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki odejmujemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecina;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 3,41-1,54=? $$
    odejmowanie-ulamkow

    $$ 3,41-1,54=1,87 $$  

Dzielenie z resztą

Na początek zapoznajmy się z twierdzeniem o dzieleniu z resztą, które brzmi następująco:
"Dla pary liczb całkowitych a i b (gdzie b ≠ 0) istnieją liczby całkowite q i r, dla których spełnione jest równanie a = qb + r, gdzie 0 ≤ r < │b│. Liczby q i r nazywa się odpowiednio ilorazem i resztą z dzielenia a przez b."

Innymi słowy, dzielenie z resztą to takie dzielenie, w którym iloraz nie jest liczbą całkowitą.

Przykład obliczania reszty z dzielenia:

  1. Podzielmy liczbę 23 przez 3.
  2. Wynikiem dzielenia nie jest liczba całkowita (nie dzieli się równo). Maksymalna liczba trójek, które zmieszczą się w 23 to 7.
  3. $$7 • 3 = 21$$
  4. Różnica między liczbami 23 i 21 wynosi 2, zatem resztą z tego dzielenia jest liczba 2.
  5. Poprawny zapis działania: $$21÷3=7$$ $$r.2$$

Przykłady:

  • $$5÷2=2$$ r. 1
  • $$27÷9=3$$ r. 0
  • $$(-8)÷(-3)=3 r. 1$$
  • $$(-15)÷4=-3$$ .r -3 lub $$(-15)÷4=-4$$ r. 1

  Zapamiętaj

Reszta jest zawsze mniejsza od dzielnika.

Zobacz także
Udostępnij zadanie