Matematyka

W ostrosłupie prawidłowym trójkątnym krawędź boczna ma 4.2 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

W ostrosłupie prawidłowym trójkątnym krawędź boczna ma

4
 Zadanie
5
 Zadanie
6
 Zadanie

7
 Zadanie

Przekrój jest trójkątem równoramiennym, jego ramiona to wysokości ścian bocznych (te wysokości są równe, ponieważ każda ściana boczna w ostrosłupie prawidłowym trójkątnym jest takim samym trójkątem)

Podstawą tego przekroju (odcinek x) jest odcinek łączący środki boków podstawy (ponieważ wysokości ścian bocznych, które są trójkątami równoramiennymi, dzielą boki podstawy ostrosłupa na połowy)

 

Podstawa ostrosłupa to trójkąt równoboczny, znamy jego wysokość i znamy wzór na wysokość trójkąta równobocznego. Oznaczmy przez a długość boku tego trójkąta (krawędź podstawy)

 

Znamy długość krawędzi podstawy, możemy więc szukać odcinków x i h.  

 

 

 

Teraz z twierdzenia Pitagorasa obliczymy długość odcinka h

 

Teraz możemy policzyć obwód przekroju: 

DYSKUSJA
klasa:
Informacje
Autorzy: A. Drążek, E.Duvnjak, Ewa Kokiernak-Jurkiewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Kwadrat

W kwadracie: 

  • wszystkie boki mają jednakową długość

  • wszystkie kąty wewnętrzne są kątami prostymi (mają miary wynoszące 90°)

  • przekątne mają jednakowe długości, przecinają się w połowie i są prostopadłe

Wzór na pole kwadratu

`P=a*a=a^2` 

`a`  - długość boku kwadratu


Uwaga!

Każdy kwadrat jest prostokątem.

Zamiana ułamka zwykłego na dziesiętny

Jeżeli ułamek zwykły posiada w mianowniku 10, 100, 1000, … to zamieniamy go na ułamek dziesiętny w następujący sposób: między cyframi liczby znajdującej się w liczniku danego ułamka zwykłego stawiamy przecinek tak, aby po przecinku było tyle cyfr, ile zer w mianowniku. Gdyby zabrakło cyfr przy stawianiu przecinka, to należy dopisać brakującą ilość zer.

Przykłady:

  • $$3/{10}= 0,3$$ ← przepisujemy liczbę 3 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${64}/{100}= 0,64$$ ← przepisujemy liczbę 64 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${482}/{1000} = 0,482$$ ← przepisujemy liczbę 482 z licznika i stawiamy przecinek tak, aby po przecinku były trzy cyfry (bo w mianowniku mamy trzy zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${45}/{10}= 4,5$$ ← przepisujemy liczbę 45 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); w tym przypadku nie ma potrzeby dopisywania zer,

  • $${2374}/{100}= 23,74$$ ← przepisujemy liczbę 2374 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); w tym przypadku nie ma potrzeby dopisywania zer.

  Uwaga

Istnieją ułamki zwykłe, które możemy rozszerzyć lub skrócić tak, aby otrzymać w mianowniku 10, 100, 1000,... Jednak nie wszystkie ułamki można zamienić na równe im ułamki dziesiętne, to znaczy tak rozszerzyć lub skrócić, aby otrzymać ułamek o mianowniku 10, 100, 1000 itd.

Przykłady ułamków, które dają się rozszerzyć lub skrócić, tak aby otrzymać ułamek dziesiętny:
$$1/2= {1•5}/{2•5}=5/{10}= 0,5$$
$$3/{20}= {3•5}/{20•5}= {15}/{100}= 0,15$$
$${80}/{400}= {80÷4}/{400÷4}={20}/{100}= 2/{10}= 0,2$$

Nie można natomiast zamienić na ułamek dziesiętny ułamka $$1/3$$. Ułamka tego nie można skrócić ani rozszerzyć tak, aby w mianowniku pojawiła się liczba 10, 100, 1000 itd.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom