Matematyka

Matematyka wokół nas 1 (Podręcznik, WSiP)

Jaka jest ostatnia cyfra liczby .a)2^84 b)3^125 4.62 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

a) `2^1 =2`

`2^2 =4`

`2^3 =8`  

`2^4 =16`

`2^5 =32`

`2^6 =64...`

Cyfry jedności powtarzają się co cztery potęgi. Ponieważ `84:4 = 21 = 4* 5 + 1,`  więc ostatnia cyfra liczby `2^84`  jest taka sama, jak w liczbie `2^1,` czyli 2.

 

b) `3^1=3`

`3^2 =9`

`3^3 =27`

`3^4 =81`

`3^5 =243`

`3^6 =729...`

Cyfry jedności powtarzają się, co cztery potęgi. Ponieważ `125:4 = 31*4 + 1,`  więc ostatnia cyfra liczby `3^125`  jest taka sama, jak w liczbie `3^1,` czyli 3.

DYSKUSJA
user profile image
Olga

29 wrzesinia 2017
Dzieki za pomoc
user profile image
Amanda

23 wrzesinia 2017
Dziękuję :)
Informacje
Matematyka wokół nas 1
Autorzy: Ewa Duvnjak, Ewa Kokiernak-Jurkiewicz, Maria Wójcicka
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Daniel

1714

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Wyrażenie dwumianowane

Wyrażenia dwumianowe to wyrażenia, w których występują dwie jednostki tego samego typu.

Przykłady: 5 zł 30 gr, 2 m 54 cm, 4 kg 20 dag.

Wyrażenia dwumianowe możemy zapisać w postaci ułamka dziesiętnego.

Przykład: 3 m 57 cm = 3,57 cm , bo 57 cm to 0,57 m.

Jednostki:

  • 1 cm = 10 mm; 1 mm = 0,1 cm
  • 1 dm = 10 cm; 1 cm = 0,1 dm
  • 1 m = 100 cm; 1 cm = 0,01 m
  • 1 m = 10 dm; 1 dm = 0,1 m
  • 1 km = 1000 m; 1 m = 0,001 km
  • 1 zł = 100 gr; 1 gr = 0,01 zł
  • 1 kg = 100 dag; 1 dag = 0,01 kg
  • 1 dag = 10 g; 1 g = 0,1 dag
  • 1 kg = 1000 g; 1 g = 0,001 kg
  • 1 t = 1000 kg; 1 kg = 0,001 t

Przykłady zamiany jednostek:

  • 10 zł 80 gr = 1000 gr + 80 gr = 1080 gr
  • 16 gr = 16•0,01zł = 0,16 zł
  • 1 zł 52 gr = 1,52 zł
  • 329 gr = 329•0,01zł = 3,29 zł
  • 15 kg 60 dag = 1500dag + 60dag = 1560 dag
  • 23 dag = 23•0,01kg = 0,23 kg
  • 5 kg 62 dag = 5,62 kg
  • 8 km 132 m = 8000 m+132 m = 8132 m
  • 23 cm 3 mm = 230 mm + 3 mm = 233 mm
  • 39 cm = 39•0,01m = 0,39 m
Ułamki właściwe i niewłaściwe
  1. Ułamek właściwy – ułamek, którego licznik jest mniejszy od mianownika. Ułamek właściwy ma zawsze wartość mniejszą od 1.
    Przykłady: $$3/8$$, $${23}/{36}$$, $$1/4$$, $$0/5$$.
     

  2. Ułamek niewłaściwy – ułamek, którego mianownik jest równy lub mniejszy od licznika. Ułamek niewłaściwy ma zawsze wartość większą od 1.
    Przykłady: $${15}/7$$, $$3/1$$, $${129}/5$$, $${10}/5$$.
     

Zobacz także
Udostępnij zadanie