Matematyka

Michasia postanowiła upiec biszkopt z jabłkami. W tym celu wzięła od babci przepis 4.5 gwiazdek na podstawie 10 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

Michasia postanowiła upiec biszkopt z jabłkami. W tym celu wzięła od babci przepis

9
 Zadanie
10
 Zadanie
11
 Zadanie
12
 Zadanie
13
 Zadanie
14
 Zadanie

15
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
Informacje
Matematyka 2001
Autorzy: A.Bazyluk, J.Chodnicki, M.Dąbrowski, A.Fryska, E.Łakoma, A.Pfeiffer, P.Piskorski, W.Zawadowski, H.Sienkiewicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Jakub

2290

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Odejmowanie ułamków dziesiętnych

Odejmowanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do odejmowania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki odejmujemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecina;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 3,41-1,54=? $$
    odejmowanie-ulamkow

    $$ 3,41-1,54=1,87 $$  

Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Zobacz także
Udostępnij zadanie