Matematyka

Matematyka z plusem 6. Geometria (Zeszyt ćwiczeń, GWO)

a) Romb o polu 24 cm² ma bok długości 8 cm. 4.52 gwiazdek na podstawie 33 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Matematyka

a) Romb o polu 24 cm² ma bok długości 8 cm.

1
 Zadanie
2
 Zadanie

3
 Zadanie

4
 Zadanie
5
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
kubertowskyy

08-02-2017
Witam, czemu używacie wzorów niezgodnych z tymi książkami? Nie powinno być P=a x h. Rozumiem że to też jest poprawne tylko trochę boli, że trzeba to przemieniać.
user profile image
Jakub

2386

10-02-2017
@kubertowskyy Cześć, poprawność wzoru P=a x h , jest wtedy kiedy przyjmiemy że a jest podstawą ,a h jest wysokością, jeżeli w zadaniu przyjmiemy inne oznaczenia twój wzór jest nieprawidłowy. My przyjęliśmy inne oznaczenia, zadanie...
user profile image
Gość

09-01-2017
Witam ,czy w pod punkcie a) nie powinno być 6 cm (jako cała długość tej wysokości) ?
user profile image
Gość

10-01-2017
@Odrabiamy.pl Jeśli pomnożymy 3 i 8 wyjdzie 24. A przecież trzeba podzielić przez 2. Wzór na pole rombu: P=e•f/2
user profile image
Jakub

2386

10-01-2017
@Gość Cześć, długość wysokości wynosi 3 cm, dlaczego ma wynosić 6 cm?
user profile image
Jakub

2386

30-01-2017
@Gość Cześć, wzór który ty podajesz jest poprawny kiedy obliczamy pole z przekątnych rombu, natomiast jak mamy wysokość i podstawę obliczamy pole ze wzoru: P=a*h . Pozdrawiamy!
Informacje
Matematyka z plusem 6. Geometria
Autorzy: M.Dobrowolska, M.Jucewicz, P.Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Jakub

2386

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Odejmowanie pisemne
  1. Zapisujemy odjemną, a pod nią odjemnik, wyrównując ich cyfry do prawej strony.

    odejmowanie1
     
  2. Odejmowanie prowadzimy od strony prawej do lewej. Najpierw odejmujemy jedności, w naszym przykładzie mamy 3 - 9. Jeśli jedności odjemnej są mniejsze od jedności odjemnika (a tak jest w naszym przykładzie), wtedy z dziesiątek przenosimy jedną (lub więcej) „dziesiątkę” do jedności i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie wygląda to następująco: od 3 nie możemy odjąć 9, więc przenosimy (pożyczamy) jedną dziesiątkę z siedmiu dziesiątek i otrzymujemy 13 – 9 = 4, czyli pod cyframi jedności zapisujemy 4, a nad cyframi dziesiątek zapisujemy ilość dziesiątek które nam zostały czyli 6 (bo od siedmiu dziesiątek pożyczyliśmy jedną, czyli zostało nam sześć dziesiątek).

    odejmowanie2
     
  3. Odejmujemy dziesiątki, a następnie zapisujemy wynik pod cyframi dziesiątek. Gdy dziesiątki odjemnej są mniejsze od dziesiątek odjemnika, z setek przenosimy jedną (lub więcej) „setkę” do dziesiątek i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie mamy: 6 – 6 = 0, czyli pod cyframi dziesiątek zapisujemy 0.

    odejmowanie2
     
  4. Odejmujemy setki, a następnie wynik zapisujemy pod cyframi setek. Gdy setki odjemnej są mniejsze od setek odjemnika, z tysięcy przenosimy jeden (lub więcej) „tysiąc” do setek i wykonujemy zwykłe odejmowanie.
    W naszym przykładzie mamy: 2 – 1 = 1, czyli pod cyframi setek zapisujemy 1.

    odejmowanie3
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik odejmowania pisemnego. W naszym przykładzie różnicą liczb 273 i 169 jest liczba 104.


Dla utrwalenia przeanalizujmy jeszcze jeden przykład odejmowania pisemnego.

Wykonamy pisemnie odejmowanie: 4071 - 956.

  1. Zapisujemy odjemną, a pod nią odjemnik.

    odejmowanie11
     
  2. Odejmujemy jedności: od 1 nie możemy odjąć 6, więc pożyczamy jedną dziesiątkę z siedmiu i otrzymujemy 11 – 6 = 5, czyli pod cyframi jedności zapisujemy 5, natomiast nad cyframi dziesiątek wpisujemy 6 (bo od siedmiu dziesiątek pożyczyliśmy jedną, czyli zostaje sześć dziesiątek).

    odejmowanie12
     
  3. Odejmujemy dziesiątki: 6 – 5 = 1, czyli pod cyframi dziesiątek wpisujemy 1.

    odejmowanie13
     
  4. Odejmujemy setki: od 0 nie możemy odjąć 9, więc pożyczamy jeden tysiąc i rozmieniamy go na 10 setek (bo jeden tysiąc to dziesięć setek) i otrzymujemy 10 – 9 = 1, czyli pod cyframi setek wpisujemy 1, a nad cyframi tysięcy wpisujemy 3, bo tyle tysięcy zostało.

    odejmowanie14
     
  5. Odejmujemy tysiące: w naszym przykładzie mamy 3 – 0 = 3 i wynik zapisujemy pod cyframi tysięcy.

    odejmowanie15
     
  6. Wynik naszego odejmowania: 4071 – 956 = 3115.

Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Zobacz także
Udostępnij zadanie