Matematyka

Oblicz sumę długości krawędzi każdego z narysowanych ostrosłupów 4.75 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Oblicz sumę długości krawędzi każdego z narysowanych ostrosłupów

5
 Zadanie

6
 Zadanie
8
 Zadanie
9
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a) Krawędzie podstawy ostrosłupa mają miarę 6, 12 i 12. Jedna z krawędzi bocznych ma miarę 5, trzeba policzyć długości dwóch pozostałych krawędzi bocznych (które są tej samej długości). Przez oznaczmy długość tej szukanej krawędzi bocznej.

Liczmy   korzystając  z tw. Pitagorasa

Suma długości krawędzi ostrosłupa to

b) Krawędzie podstawy ostrosłupa mają miarę 8, 8 i 8. Dwie krawędzie boczne mają miarę 10, trzeba policzyć długość trzeciej krawędzi bocznej.

Przez oznaczmy długość tej szukanej krawędzi bocznej.

Liczmy   korzystając  z tw. Pitagorasa

 Suma długości krawędzi ostrosłupa to

c) Dwie ściany boczne ostrosłupa są przystającymi równoramiennymi trójkątami prostokątnymi. Zatem wiemy, że dwie pozostałe krawędzie podstawy mają miarę 6. Wiemy zatem, że krawędzie podstawy ostrosłupa mają miarę 5, 6 i 6. Jedna z krawędzi bocznych ma miarę 6, trzeba policzyć długości dwóch pozostałych krawędzi bocznych (które są tej samej długości). Przez oznaczmy długość tej szukanej krawędzi bocznej.

Korzystając z własności trójkąta prostokątnego o kątach ostrych 45 i 45 stopni mamy

Suma długości krawędzi ostrosłupa to

 

DYSKUSJA
user avatar
Lena

25 maja 2018
Dziękuję!!!!
user avatar
Jacek

28 października 2017
Dzieki za pomoc :)
klasa:
Informacje
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201711
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Siatka prostopadłościanu

Po rozcięciu powierzchni prostopadłościanu wzdłuż kilku krawędzi i rozłożeniu go na powierzchnię płaską powstanie jego siatka. Jest to wielokąt złożony z prostokątów, czyli ścian graniastosłupa. Ten sam prostopadłościan może mieć kilka siatek.

Siatka prosopadłościanu
Dodawanie i odejmowanie

Działania arytmetyczne to dwuargumentowe działania, które dwóm danym liczbom przyporządkowują trzecią liczbę, czyli tzw. wynik działania. Zaliczamy do nich dodawanie, odejmowanie, mnożenie i dzielenie.

  1. Dodawanie to działanie przyporządkowujące dwóm liczbom a i b, liczbę c = a + b. Wynik dodawania nazywany jest sumą, a dodawane składnikami sumy.
     

    dodawanie liczb


    Składniki podczas dodawania można zamieniać miejscami, dlatego mówimy, że jest ono przemienne. Niekiedy łatwiej jest dodać dwa składniki, gdy skorzystamy z tej własności.
    Przykład: $$7 + 19 = 19 +7$$.

    Kiedy jednym ze składników sumy jest inna suma np. (4+8), to możemy zmienić położenie nawiasów (a nawet je pominąć), na przykład $$12 + (4 + 8) = (12 + 8) + 4 = 12 + 8 + 4$$
    Mówimy, że dodawanie jest łączne.

    Poniżej przedstawiamy przykład, gdy warto skorzystać z praw łączności i przemienności:
    $$12 + 3 + 11 + (7 + 8) + 9 = 12 + 8 +3 +7 + 11 + 9 = 20 + 10 + 20 = 50$$
     

  2. Odejmowanie
    Odjąć liczbę b od liczby a, tzn. znaleźć taką liczbę c, że a = b+ c.
    Przykład $$23 - 8 = 15$$, bo $$8 + 15 = 23$$.

    Odejmowane obiekty nazywane są odpowiednio odjemną i odjemnikiem, a wynik odejmowania różnicą.

    odejmowanie liczb

    Odejmowanie w przeciwieństwie do dodawania nie jest ani łączne, ani przemienne.
    np. $$15 - 7 ≠ 7 - 15$$ (gdzie symbol ≠ oznacza "nie równa się").
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom