Matematyka

Krótsze ramię trapezu prostokątnego ma 3 cm, podobnie jak jego krótsza podstawa 4.62 gwiazdek na podstawie 13 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Krótsze ramię trapezu prostokątnego ma 3 cm, podobnie jak jego krótsza podstawa

9
 Zadanie

10
 Zadanie
11
 Zadanie
12
 Zadanie
13
 Zadanie
14
 Zadanie
15
 Zadanie
16
 Zadanie
17
 Zadanie
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

Mamy trapez prostokątny o podstawach 3 cm i 8 cm oraz wyskości 3 cm. Aby obliczyć długość dłuższego ramienia tego trapezu wystarczy obliczyć długość przeciwprostokątnej trójkąta prostokątnego o przyprostokatnych 3 cm i 5 cm (5 = 8-3, różnica w długości podstaw trapezu). Mamy zatem `x^2=3^2+5^2=9+25=34`

`x=sqrt(34)~~5,83 cm`

Odpowiedź B

 

Odpowiedź:

B

DYSKUSJA
Informacje
Matematyka z plusem 2
Autorzy: M. Braun, J. Lech
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Kąty

Kąt to część płaszczyzny ograniczona dwiema półprostymi o wspólnym początku, wraz z tymi półprostymi.

Półproste nazywamy ramionami kąta, a ich początek – wierzchołkiem kąta.

kat-glowne
 


Rodzaje kątów:

  1. Kąt prosty – kąt, którego ramiona są do siebie prostopadłe – jego miara stopniowa to 90°.

    kąt prosty
  2. Kąt półpełny – kąt, którego ramiona tworzą prostą – jego miara stopniowa to 180°.
     

    kąt pólpelny
     
  3. Kąt ostry – kąt mniejszy od kąta prostego – jego miara stopniowa jest mniejsza od 90°.
     

    kąt ostry
     
  4. Kąt rozwarty - kąt większy od kąta prostego i mniejszy od kąta półpełnego – jego miara stopniowa jest większa od 90o i mniejsza od 180°.

    kąt rozwarty
  5. Kąt pełny – kąt, którego ramiona pokrywają się, inaczej mówiąc jedno ramię tego kąta po wykonaniu całego obrotu dookoła punktu O pokryje się z drugim ramieniem – jego miara stopniowa to 360°.
     

    kat-pelny
     
  6. Kąt zerowy – kąt o pokrywających się ramionach i pustym wnętrzu – jego miara stopniowa to 0°.

    kat-zerowy
 
Zobacz także
Udostępnij zadanie