Matematyka

Matematyka z plusem 3 (Podręcznik, GWO)

Ilu karatowe złoto powstanie w wyniku stopienia: 4.54 gwiazdek na podstawie 11 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Ilu karatowe złoto powstanie w wyniku stopienia:

4
 Zadanie
5
 Zadanie

6
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a) stop złota i palladu: 1+23=24

czyli ilość karatów określa ilość złota do sumy składników: 23/24 więc jest to stop 23 karatowy

b) stop złota, srebra i miedzi :15+3+2=20

czyli ilość złota do sumy składników to 15/20=18/24 więc stop jest 18 karatowy

c) stop złota, cynku, niklu i tytanu  7+3+1+1=12

czyli ilość złota do sumy składników to 7/12=14/24 więc stop jest 14 karatowy

Odpowiedź:

a) 23

b) 18

c) 14

DYSKUSJA
Informacje
Autorzy: Małgorzata Dobrowolska
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201247
Autor rozwiązania
user profile image

Jacek

1678

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Liczby mieszane i ich zamiana na ułamek niewłaściwy
ulamek

Liczba mieszana jest to suma dwóch składników, z których jeden jest liczbą naturalną (składnik całkowity), a drugi ułamkiem zwykłym właściwym (składnik ułamkowy).

$$4 1/9= 4 + 1/9 $$ ← liczbę mieszana zapisujemy bez użycia znaku dodawania +.

Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: mianownik składnika ułamkowego mnożymy przez składnik całkowity i do tego iloczynu dodajemy licznik składnika ułamkowego. Mianownik natomiast jest równy mianownikowi składnika ułamkowego.

Przykład:

$$3 1/4= {3•4+1}/4= {13}/4$$
 
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Zobacz także
Udostępnij zadanie