Matematyka

Matematyka z plusem 3 (Podręcznik, GWO)

Dwa widoczne na rysunku wielokąty są podobne. 4.53 gwiazdek na podstawie 15 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka

Dwa widoczne na rysunku wielokąty są podobne.

1
 Zadanie
2
 Zadanie
3
 Zadanie

4
 Zadanie

5
 Zadanie
6
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Stosunek pól figur podobnych jest równy kwadratowi skali podobieństwa:

rownanie matematyczne

a) Skala podobieństwa wynosi k=1/2

rownanie matematyczne

rownanie matematyczne

b) Skala podobieństwa wynosi k=2/3

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

Odpowiedź:

a) P=16

b) P=27/4

DYSKUSJA
user avatar
Pablo

16 kwietnia 2018
Dzięki :)
user avatar
Marcel

6 stycznia 2018
Dzięki!!!!
user avatar
Wioletta

5 listopada 2017
dzieki!
user avatar
Klaudia

2 października 2017
dzięki!!!
Informacje
Autorzy: Małgorzata Dobrowolska
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201247
Autor rozwiązania
user profile

Jacek

1705

Nauczyciel

Wiedza
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom