Czytanie informacji - Zadanie 6: Matematyka z plusem 3. Zbiór zadań 2001 - strona 85
Matematyka
Wybierz książkę
Czytanie informacji 4.67 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a) 4stopy mają 122cm czyli 1 stopa ma cm

b) Szerokość wynosi 4,5 stopy czyli

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy III gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
III gimnazjum
Informacje
Autorzy: Braun Marcin, Lech Jacek
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374201728
Autor rozwiązania
user profile

Jacek

2861

Nauczyciel

Wiedza
Liczby spełniające równania

Litery w równaniu oznaczają liczby, których nie znamy, czyli niewiadome

Liczby odpowiadające tym niewiadomym nazywamy liczbami spełniającymi równanie lub pierwiastkami równania.

Przykłady

  • równanie  `x+6=10`  spełnia liczba `4`, gdyż  `4+6=10`, czyli `x=4` 

  • równanie  `2x+1=1`  spełnia liczba `0`, gdyż  `2*0+1=0+1=1`, czyli `x=1`     



Równania z jedną niewiadomą mogą:

  • nie mieć żadnego rozwiązania - równania sprzeczne;

  • mieć jedno rozwiązanie;

  • mieć nieskończenie wiele rozwiązań - równania tożsamościowe.  

Przykłady: 

  • równanie  `x+5=0`  ma jedno rozwiązanie, spełnia je liczba  `-5` , czyli  `x=-5`   

  • równanie  `x+2=x+1`  nie ma rozwiązania, nie spełnia go żadna liczba - równanie sprzeczne

  • równanie  `x+2=2+x`  ma nieskończenie wiele rozwiązań, spełnia go każda liczba  - równanie tożsamościowe



Zbiór liczb spełniających równanie to zbiór rozwiązań równania

Jeśli dwa równania mają taki sam zbiór rozwiązań, to są to równania równoważne

Przykład: 

  • równania  `x+2=5`  i  `x-3=0`  są równoważne, gdyż rozwiązaniem każdego z nich jest liczba 3 
Pole powierzchni graniastosłupa

Pole powierzchni graniastosłupa to suma pól wszystkich jego ścian.

Pole powierzchni składa się z pola powierzchni bocznej czyli sumy pól wszystkich ścian bocznych oraz z dwóch pól powierzchni identycznych podstaw. 

`P_c=2P_p+P_b`  

`P_c \ \ \ ->`    pole powierzchni całkowitej graniastosłupa 

`P_p \ \ \ ->`    pole podstawy graniastosłupa 

`P_b \ \ \ ->`    pole powierzchni bocznej graniastosłupa


Z powyższego wzoru możemy wyprowadzić wzór na pole powierzchni prostopadłościanu oraz sześcianu. 

Prostopadłościan:

`P_c=2P_p+P_b` 

`P_p=a*b=ab` 

`P_b=2*a*c+2*b*c=2ac+2bc` 

Zatem: 

`P_c=2ab+2ac+2bc=2(ab+ac+bc)`  


Sześcian: 

Wszystkie krawędzie sześcianu mają jednakową długość.

Wszystkie ściany są przystającymi kwadratami. Jest ich 6. 

`P_c=2P_p+P_b`

`P_p=a*a=a^2`  

`P_b=4*a*a=4a^2` 

Zatem:

`P_c=2a^2+4a^2=6a^2` 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom