Matematyka

a) Według jednego z przepisów na ketchup do 3 kg pomidorów... 4.34 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

a) Według jednego z przepisów na ketchup do 3 kg pomidorów...

8
 Zadanie
9
 Zadanie
10
 Zadanie
11
 Zadanie
12
 Zadanie
13
 Zadanie

14
 Zadanie

a) Wiemy, że według przepisu na ketchup do 3 kg pomidorów trzeba dodać 1,1 kg  cebuli  i 250 ml octu winnego

obliczmy, ile cebuli i octu winnego potrzeba do zrobienia ketchupu z 5 kg pomidorów:

 - masa cebuli potrzebna do zrobienia ketchupu z 5 kg pomidorów

 

 

 

 

 


 - masa octu winnego potrzebna do zrobienia ketchupu z 5 kg pomidorów

 

 

 

 

 

Odp.: Do zrobienia ketchupu z 5 kg pomidorów według tego przepisu potrzeba ok. 1,8 kg cebuli i 417 ml octu winnego.


b) Wiemy, że według przepisu na kruche ciasteczka do 30 dag mąki trzeba dodać 20 dag masła  i 10 dag cukru

obliczmy, ile masła i cukru potrzeba do zrobienia ciasteczek z 50 dag mąki:

 - masa masła potrzebna do zrobienia ciasteczek z 50 dag mąki

 

 

 

 

 


 - masa cukru potrzebna do zrobienia ciasteczek z 50 dag mąki

 

 

 

 

 


Odp.: Do zrobienia ciasteczek z 50 dag mąki według tego przepisu potrzeba ok. 33 dag masła i  ok 17 dag cukru.

DYSKUSJA
klasa:
Informacje
Autorzy: Marcin Braun, Jacek Lech, Marek Pisarski
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209670
Autor rozwiązania
user profile

Ola

23912

Nauczyciel

Wiedza
Wielkości wprost proporcjonalne

W matematyce w wielu przypadkach można zauważyć wielkości wprost proporcjonalne. Co to jest?

Wielkości wprost proporcjonalne to takie wielkości, w których wraz ze wzrostem jednej z nich druga rośnie tyle samo razy.


Przykłady:

  • Liczba kupionych jabłek i kwota, którą musimy za nie zapłacić. 

    Jeśli zwiększymy liczbę zakupionych jabłek, tyle samo razy zwiększy się kwota, którą należy za nie zapłacić. 

  • Liczba jednakowych ziarenek kaszy i łączna ich masa. 

    Jeśli zwiększymy liczbę ziarenek, tyle samo razy zwiększy się ich łączna masa. 

  • Czas podróży i droga przebyta w tym czasie (zakładamy, że poruszamy się ze stałą prędkością). 

    Ile razy dłuższy czas podróży, tyle razy dłuższą drogę można przebyć. 

 

Równania

Dwa wyrażenia algebraiczne, z których przynajmniej jedno zawiera literę, połączone znakiem równości tworzą równanie.

Litera występująca w równaniu to niewiadoma.

Wyrażenie występujące po lewej stronie znaku równości to lewa strona równania, a wyrażenie występujące po prawej stronie to prawa strona równania.

lewa i prawa strona równania

Równanie pierwszego stopnia z jedną niewiadomą to dwa wyrażenia algebraiczne połączone znakiem równości, przy czym w równaniu tym występuje tylko jedna niewiadoma w pierwszej potędze.

Przykłady równań pierwszego stopnia z jedną niewiadomą:

  • $$7x − 11 = 17$$
  • $$8y = 16$$
  • $$3x + 7 = 10 + 2x$$

Rozwiązanie równania z jedną niewiadomą – to liczba, która podstawiona do równania w miejsce niewiadomej spełnia to równanie (czyli po podstawieniu tej liczby w miejsce niewiadomej, lewa strona równania będzie się równać prawej stronie).

Przykład 1.

Sprawdźmy czy liczba 2 spełnia równanie $$3x + 7 = 10 + 2x$$, czyli czy jest rozwiązaniem tego równania.
Podstawiamy liczbę 2 w miejsce niewiadomej x.

  • I sposób
    Obliczamy wartość lewej i prawej strony równania, podstawiając w miejsce x liczbę 2, a następnie porównujemy otrzymane wyniki:

    $$L = 3x + 7 = 3•2+ 7 = 6 + 7 = 13$$
    $$P = 10 + 2x = 10 + 2•2= 10 + 4 = 14$$
    $$13≠14$$, czyli $$L≠P$$

    czyli liczba 2 nie spełnia danego równania, zatem nie jest rozwiązaniem równania.

  • II sposób
    Podstawiamy 2 w miejsce x i sprawdzamy czy otrzymamy równość prawdziwą:

    $$3•2+7=10 + 2•2$$
    $$6 + 7 = 10 + 4$$
    $$13 = 14$$ ← otrzymaliśmy równość fałszywą

    zatem liczba 2 nie spełnia danego równania, zatem nie jest rozwiązaniem równania.

Przykład 2.

Sprawdźmy czy liczba 3 spełnia równanie $$3x + 7 = 10 + 2x$$, czyli czy jest rozwiązaniem tego równania.

  • Podstawiamy liczbę 3 w miejsce niewiadomej x.
    Obliczamy wartość lewej i prawej strony równania, podstawiając w miejsce x liczbę 2, a następnie porównujemy otrzymane wyniki:

    $$L = 3x + 7 = 3•3+ 7 = 9 + 7 = 16$$
    $$P = 10 + 2x = 10 + 2•3= 10 + 6 = 16$$
    $$L = P$$

    Zatem liczba 3 spełnia dane równanie, zatem jest jego rozwiązaniem.
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom