Matematyka

Klomb ma kształt prostokąta... 4.71 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

Dane:

Jeden bok klombu:   

Drugi bok klombu:  

Szerokość pasma trawnika:  

Długość jednego z boków pasma trawnika:  

Długość drugiego z boków pasma trawnika:  

Długość płotu - obwód trawnika:  

Szukane:

 

  

Rozwiązanie:

Obwód trawnika w kształcie prostokąta o bokach x i y możemy przedstawić wzorem:

 

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Marcin Braun, Jacek Lech, Marek Pisarski
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209670
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Równania

Dwa wyrażenia algebraiczne, z których przynajmniej jedno zawiera literę, połączone znakiem równości tworzą równanie.

Litera występująca w równaniu to niewiadoma.

Wyrażenie występujące po lewej stronie znaku równości to lewa strona równania, a wyrażenie występujące po prawej stronie to prawa strona równania.

lewa i prawa strona równania

Równanie pierwszego stopnia z jedną niewiadomą to dwa wyrażenia algebraiczne połączone znakiem równości, przy czym w równaniu tym występuje tylko jedna niewiadoma w pierwszej potędze.

Przykłady równań pierwszego stopnia z jedną niewiadomą:

  • $$7x − 11 = 17$$
  • $$8y = 16$$
  • $$3x + 7 = 10 + 2x$$

Rozwiązanie równania z jedną niewiadomą – to liczba, która podstawiona do równania w miejsce niewiadomej spełnia to równanie (czyli po podstawieniu tej liczby w miejsce niewiadomej, lewa strona równania będzie się równać prawej stronie).

Przykład 1.

Sprawdźmy czy liczba 2 spełnia równanie $$3x + 7 = 10 + 2x$$, czyli czy jest rozwiązaniem tego równania.
Podstawiamy liczbę 2 w miejsce niewiadomej x.

  • I sposób
    Obliczamy wartość lewej i prawej strony równania, podstawiając w miejsce x liczbę 2, a następnie porównujemy otrzymane wyniki:

    $$L = 3x + 7 = 3•2+ 7 = 6 + 7 = 13$$
    $$P = 10 + 2x = 10 + 2•2= 10 + 4 = 14$$
    $$13≠14$$, czyli $$L≠P$$

    czyli liczba 2 nie spełnia danego równania, zatem nie jest rozwiązaniem równania.

  • II sposób
    Podstawiamy 2 w miejsce x i sprawdzamy czy otrzymamy równość prawdziwą:

    $$3•2+7=10 + 2•2$$
    $$6 + 7 = 10 + 4$$
    $$13 = 14$$ ← otrzymaliśmy równość fałszywą

    zatem liczba 2 nie spełnia danego równania, zatem nie jest rozwiązaniem równania.

Przykład 2.

Sprawdźmy czy liczba 3 spełnia równanie $$3x + 7 = 10 + 2x$$, czyli czy jest rozwiązaniem tego równania.

  • Podstawiamy liczbę 3 w miejsce niewiadomej x.
    Obliczamy wartość lewej i prawej strony równania, podstawiając w miejsce x liczbę 2, a następnie porównujemy otrzymane wyniki:

    $$L = 3x + 7 = 3•3+ 7 = 9 + 7 = 16$$
    $$P = 10 + 2x = 10 + 2•3= 10 + 6 = 16$$
    $$L = P$$

    Zatem liczba 3 spełnia dane równanie, zatem jest jego rozwiązaniem.
Układy równań
W gimnazjum były już wprowadzone układy równań liniowych, więc nie powinno być problemem rozwiązanie ich. Dla przypomnienia: metoda polegała na tym, aby z pierwszego równania wyliczyć jedną zmienną, podstawić ją w drugim równaniu i wyliczyć drugą, podstawić tę do trzeciego - i tak dalej.

W liceum, wraz z wprowadzeniem funkcji kwadratowej, pojawiają się układy równań kwadratowych. Sposób rozwiązywania pozostaje jednak taki sam: kolejno wyznaczamy zmienne i podstawiamy je do następnych równan.

Jedyna różnica między układami liniowymi i kwadratowymi wynika ze specyfiki funkcji kwadratowej - może wyjść więcej niż jedno rozwiązanie.

Przykład:
$$x = y + 1$$
$$y^2 = 2z + 3$$
$$z = 3x + y$$

Z pierwszego równania wyznaczamy $$y$$:
$$y = x - 1$$

Podstawiamy do drugiego:
$$(x-1)^2 = 2z + 3$$

Wyznaczamy $$z$$
$$z = {(x-1)^2 - 3}/{2}$$

I podstawiamy wszystko do trzeciego równania:
$${(x-1)^2 - 3}/{2} = 3x + (x-1)$$
$$(x-1)^2 - 3 = (4x - 1)×2$$
$$x^2 - 2x + 1 - 3 = 8x - 2$$
$$x^2 - 10x = 0$$

Pierwsze rozwiązanie: $$x_1 = 0$$, równanie jest prawdziwe.

Drugie rozwiązanie: dzieląc obie strony przez $$x$$ otrzymujemy $$x_2 = 10$$

Teraz wystarczy jedynie podstawić wyniki do pierwszego równania:
$$y_1 = 0 - 1 = -1$$
$$y_2 = 10 - 1 = 9$$

I ostatecznie wyliczyć z:
$$z_1 = 3x_1 + y_1$$
$$z_1 = 3×0 + (-1) = -1$$
$$z_2 = 3x_2 + y_2$$
$$z_2 = 3×10 + 9 = 39$$

Jak widać, rozwiązaniami układu równań są trójki liczb $$(0,-1,-1)$$ oraz $$(10, 9, 39)$$.

Uwaga: trzeba pamiętać o tym, aby nie mieszać ze sobą przypadków, tzn. na przykład w trakcie wyliczania $$z$$ nie podstawić do jednego równania $$x_1$$ i $$y_2$$ - to są dwa zupełnie różne przypadki.
 

Ćwieczenie 1. Rozwiązać układ równań:

$$y^2 = 5x + 2$$
$$3z = 2y - x$$
$$z = -2x + y$$

Zaczynamy od podstawienia do równania drugiego $$z$$ z równania trzeciego:

$$3(-2x + y) = 2y -x$$
$$6x - x = 3y - 2y$$
$$5x = y$$

Możemy teraz wstawić otrzymanego $$y$$-a do równania pierwszego obliczając $$x$$:
$$(5x)^2 = 5x + 2$$
$$25x^2 - 5x - 2= 0$$

Używając wzorów Viete'a możemy rozłożyć tę funkcję na iloczyn:
$$(5x - 2)(5x + 1) = 0$$

Rozpatujemy teraz dwa przypadki:
a) $$5x - 2 = 0$$
$$5x = 2$$
$$x = {2}/{5}$$

Wtedy $$y = 5x = 2$$ oraz $$z = -2x + y = -{4}/{5} + 2 = {6}/{5}$$

b) $$5x + 1 = 0$$
$$5x = -1$$
$$x = -{1}/{5}$$

Wtedy $$y = 5x = -1$$ oraz $$z = -2(-{1}/{5}) -1 = -{3}/{5}$$

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom