Matematyka

Półtorakilometrowy odcinek szosy o szerokości... 4.71 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

Półtorakilometrowy odcinek szosy o szerokości...

39
 Zadanie
40
 Zadanie

41
 Zadanie

42
 Zadanie
43
 Zadanie
44
 Zadanie

Dane:

Długość odcinka szosy:  

Szerokość odcinka szosy:  

Grubość warstwy asfaltu:  

 

 

Obliczamy pole powierzchni szosy:

 

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup pakiet Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Marcin Braun, Jacek Lech, Marek Pisarski
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209670
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Cechy podzielności liczb

Cechy podzielności liczb ułatwiają znalezienie dzielników, zwłaszcza dużych liczb.

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.


Cechy podzielności:

  1. Podzielność liczby przez 2

    Liczba jest podzielna przez 2, gdy jej ostatnią cyfrą jest 0, 2, 4, 6 lub 8.

    Przykład:

    • 1 896 319 128 → liczba jest podzielna przez 2, ponieważ jej ostatnią cyfrą jest 8.
       
  2. Podzielność liczby przez 3

    Liczba jest podzielna przez 3, gdy suma jej cyfr jest liczbą podzielną przez 3.

    Przykład:

    • 7 981 272 → liczba jest podzielna przez 3, ponieważ suma jej cyfr (7+9+8+1+2+7+2=36) jest liczbą podzielną przez 3.
       
  3. Podzielność liczby przez 4

    Liczba jest podzielna przez 4, gdy jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4.

    Przykład:

    • 2 147 816 → liczba jest podzielna przez 4, ponieważ jej dwie ostatnie cyfry tworzą liczbę 16, a liczba 16 jest podzielna przez 4.
       
  4. Podzielność liczby przez 5

    Liczba jest podzielna przez 5, gdy jej ostatnią cyfrą jest 0 lub 5.

    Przykład:

    • 18 298 415 → liczba jest podzielna przez 5, ponieważ jej ostatnią cyfrą jest 5.
       
  5. Podzielność liczby przez 6

    Liczba jest podzielna przez 6, gdy jednocześnie dzieli się przez 2 i 3.

    Przykład:

    • 1248 → liczba jest podzielna przez 6, ponieważ dzieli się przez 2 (jej ostatnią cyfrą jest 8), a także dzieli się przez 3 (suma jej cyfr 1+2+4+8=15 jest liczbą podzielną przez 3).
       
  6. Podzielność liczby przez 9

    Liczba jest podzielna przez 9, gdy suma jej cyfr jest liczbą podzielną przez 9.

    Przykład:

    • 1 890 351 -> liczba jest podzielna przez 9, ponieważ suma jej cyfr (1+8+9+0+3+5+1=27) jest jest liczbą podzielną przez 9.
       
  7. Podzielność liczby przez 10

    Liczba jest podzielna przez 10, gdy jej ostatnią cyfra jest 0.

    Przykład:

    • 192 290 → liczba jest podzielna przez 10, ponieważ jej ostatnią cyfrą jest 0.
       
  8. Podzielność liczby przez 25

    Liczba jest podzielna przez 25, gdy dwie ostatnie cyfry tworzą liczbę podzielną przez 25.

    Przykład:

    • 4675 → liczba jest podzielna przez 25, ponieważ jej dwie ostatnie cyfry tworzą liczbę 75, a 75 jest podzielne przez 25.
       
  9. Podzielność liczby przez 100

    Liczba jest podzielna przez 100, gdy jej dwie ostatnie cyfry to zera.

    Przykład:

    • 12 848 100 → liczba jest podzielna przez 100, ponieważ jej dwie ostatnie cyfry to zera.
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom