Matematyka

Dane są trzy punkty: ... 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

Dane są trzy punkty: ...

3
 Zadanie
4
 Zadanie

5
 Zadanie

a)

 

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Jacek Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209656
Autor rozwiązania
user profile

Magda

5500

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Długość odcinka

W poniższym układzie współrzędnych zaznaczono punkty `A=(x_A, y_A)`  oraz  `B=(x_B, y_B)` . 

Obrano również punkt  `C`  tak, aby punkty A, B i C były wierzchołkami trójkąta prostokątnego. 

Zauważmy, że: 

  • pierwsza współrzędna punktu C jest równa pierwszej współrzędnej punktu B;

  • druga współrzędna punktu C jest równa drugiej współrzędnej punktu A.

Punkt C ma więc współrzędne: 

`C=(x_B, y_A)` 



Trójkąt ABC jest prostokątny.

Korzystając z twierdzenia Pitagorasa możemy obliczyć ile wynosi długość odcinka AB.    

`|AC|^2+|CB|^2=|AB|^2` 

Zatem: 

`|AB|=sqrt{|AC|^2+|CB|^2}` 



Przykład

Obliczamy ile wynosi długość odcinka AB, którego końcami są punkty  `A=(-1,-2)`  oraz  `B=(2,3)`

 

Zaznaczamy taki punkt C, aby punkty A, B i C były wierzchołkami trójkąta prostokątnego. 

Punkt C ma współrzędne:  `C=(2, -2)`.

Mamy również:  

`|AC|=3` 

`|CB|=5` 

Długość odcinka AB wynosi więc: 

`|AB|=sqrt{3^2+5^2}=sqrt{9+25}=sqrt{34}`    

Koło i okrąg

Okrąg o środku S i promieniu długości r (r – to długość, więc jest liczbą dodatnią, co zapisujemy r>0) jest to krzywa, której wszystkie punkty leżą w tej samej odległości od danego punktu S zwanego środkiem okręgu.

Inaczej mówiąc: okręgiem o środku S i promieniu r nazywamy zbiór wszystkich punków płaszczyzny, których odległość od środka S jest równa długości promienia r.

okreg1
 

Koło o środku S i promieniu długości r to część płaszczyzny ograniczona okręgiem wraz z tym okręgiem.

Innymi słowy koło o środku S i promieniu długości r to figura złożona z tych punktów płaszczyzny, których odległość od środka S jest mniejsza lub równa od długości promienia r.

okreg2
 

Różnica między okręgiem a kołem – przykład praktyczny

Gdy obrysujemy np. monetę powstanie nam okrąg. Po zakolorowaniu tego okręgu powstanie nam koło, czyli zbiór punktów leżących zarówno na okręgu, jak i w środku.

okrag_kolo

Środek okręgu (lub koła) to punkt znajdujący się w takiej samej odległości od każdego punktu okręgu.
Promień okręgu (lub koła) to każdy odcinek, który łączy środek okręgu z punktem należącym do okręgu.

Cięciwa okręgu (lub koła) - odcinek łączący dwa punkty okręgu
Średnica okręgu (lub koła) - cięciwa przechodząca przez środek okręgu. Jest ona najdłuższą cięciwą okręgu (lub koła).

Cięciwa dzieli okrąg na dwa łuki.
Średnica dzieli okrąg na dwa półokręgi, a koło na dwa półkola.

kolo_opis
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom