Matematyka

Zraszacz podlewa dwa trawniki z taką samą intensywnością. 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

Zraszacz podlewa dwa trawniki z taką samą intensywnością.

4
 Zadanie
5
 Zadanie

6
 Zadanie

120 m² - 600 l

70 m² - x

Im mniejsza powierzchnia trawnika, tym mniej litrów wody potrzeba do jej podlania. 

Wielkości te są więc wprost proporcjonalne. 

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
jeruzalwojtek

1

25 października 2018
Co oznacza ta kreska po 600 w pierwszym wersie?
user avatar
Agnieszka

35917

26 października 2018

Cześć, "kreska", o którą pytasz to litera "l" oznaczająca litry, zatem w pierwszej linijce zapis "600 l" oznacza 600 litrów. Pozdrawiam!

user avatar
Arek

30 października 2018
dzieki :):)
user avatar
Kamil

23 października 2018
dzieki!!!!
klasa:
Informacje
Autorzy: Jacek Lech
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209656
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Proporcje

Proporcja to równość dwóch ułamków czyli równość dwóch ilorazów.

Wyrazy skrajne to w pierwszym ułamku licznik, a w drugim ułamku mianownik.

Wyrazy środkowe to w pierwszym ułamku mianownik, a w drugim licznik.

Przykłady:

  • `m/n=k/l \ \ \ \ ->`     wyrazy skrajne: m, l;  wyrazy środkowe: n, k

  • `5/k=l/3 \ \ \ \ ->`     wyrazy skrajne: 5, 3;  wyrazy środkowe: k, l

  • `3/x=(5+x)/2 \ \ \ \ ->`     wyrazy skrajne: 3, 2;  wyrazy środkowe: x, 5+x 


W proporcji iloczyn wyrazów skrajnych jest równy iloczynowi wyrazów środkowych. 

Przykład:

  • `x/3=5/2` 

    `x*2=3*5` 

    `2x=15 \ \ \ \ \ \ \ |:2` 

    `x=7,5`   
Wielkości wprost proporcjonalne

W matematyce w wielu przypadkach można zauważyć wielkości wprost proporcjonalne. Co to jest?

Wielkości wprost proporcjonalne to takie wielkości, w których wraz ze wzrostem jednej z nich druga rośnie tyle samo razy.


Przykłady:

  • Liczba kupionych jabłek i kwota, którą musimy za nie zapłacić. 

    Jeśli zwiększymy liczbę zakupionych jabłek, tyle samo razy zwiększy się kwota, którą należy za nie zapłacić. 

  • Liczba jednakowych ziarenek kaszy i łączna ich masa. 

    Jeśli zwiększymy liczbę ziarenek, tyle samo razy zwiększy się ich łączna masa. 

  • Czas podróży i droga przebyta w tym czasie (zakładamy, że poruszamy się ze stałą prędkością). 

    Ile razy dłuższy czas podróży, tyle razy dłuższą drogę można przebyć. 

 

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom