Matematyka

Zapisz w postaci jak najprostszej sumy algebraicznej: 4.38 gwiazdek na podstawie 13 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Matematyka

Zapisz w postaci jak najprostszej sumy algebraicznej:

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie

5
 Zadanie

6
 Zadanie

 

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
Tomasz Bielecki

8

8 października 2018
przydało się dzięki
user avatar
Adrianna

6 października 2018
dziena
user avatar
maszczygiel

4 października 2018
dzięki
user avatar
Natalia

2 października 2018
Dzięki :):)
klasa:
Informacje
Autorzy: Małgorzata Dobrowolska
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374209632
Autor rozwiązania
user profile

Paweł

27045

Nauczyciel

Wiedza
Wyrażenia algebraiczne

Wyrażenia algebraiczne to wyrażenia składające się z liczb, liter, znaków działań i nawiasów.

Przykłady:

  • `x+5` 

  • `x^2-y^2` 

  • `2+a` 

  • `3x-5y` 

  • `y^2` 

  • `1/2ah` 

  • `-3/4` 


Uwaga!

Wyrażenie `3*x` możemy zapisać prościej jako `3x`.

Wyrażenie `3*(m+n)` możemy zapisać prościej jako `3(m+n)` .


Uwaga!!

Jeśli w danym wyrażeniu po kropce oznaczającej znak mnożenia występuje liczba NIE WOLNO pominąć kropki. 

Wyrażenia  `3+x*5`  nie można zapisać jako `strike(3+x5)` . 

Wyrażenia `(3m+n)*7` nie można zapisać jako  `strike((3m+n)7)` . 


Przykładowe wyrażenia algebraiczne i sposób ich odczytywania.      

Wyrażenie algebraiczne (zapis) Nazwa (sposób odczytywania)
`3+b`  suma liczb 3 i b
`a+b`  suma liczb a i b
`a-b`  różnica liczb a i b
`x*y`  iloczyn liczb x i y
`m:2`  iloraz liczby m i 2 (iloraz liczby m przez 2)
`2y`  podwojona liczba y,
liczba dwa razy większa od y,
iloczyn liczb 2 i y
`3b`  potrojona liczba b,
liczba trzy razy większa od b,
iloczyn liczb 3 i b
`1/2a`  połowa liczby a
`1/3x`  trzecia część liczby x
`x^2`  kwadrat liczby x
`y^3`  sześcian liczby y
`-2xy`  iloczyn liczb -2, x i y
`x-12`  różnica liczb x i 12, 
liczba o 12 mniejsza od x

 

Przekształcanie wyrażeń algebraicznych

Wyrażenia algebraiczne - działania, w których obok liczb i znaków występują także litery. Służą do przedstawienia ogólnych wzorów, zwrotów, twierdzeń oraz równań i nierówności.

Aby doprowadzić wyrażenie do prostszej postaci należy posługiwać się działaniami takimi jak:

  • dodawanie i odejmowanie wyrazow podobnych

    $$ ab+3ab-4ab+5ab=4ab-4ab+5ab=5ab $$
  • wyłączanie wspólnego czynnika przed nawias

    $$bk+bl-bc=b(k+l-c) $$
  • mnożenie jednomianów przez sumy algbraiczne

    $$a(b+c)=(a×b)+(a×c)=ab+ac$$
  • mnożenie sum algebraicznych

    $$(m+n)(k+l)=m(k+l)+n(k+l)=mk+ml+nk+nl$$
 

Przypomnienie wzorów skróconego mnożenia:

  1. $$ {(a+b)}^2=a^2+2ab+b^2 $$
  2. $$ {(a-b)}^2=a^2-2ab+b^2 $$
  3. $$ (a+b)(a-b)=a^2-b^2 $$
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom