Matematyka

Zilustruj zbiór wszystkich punktów płaszczyzny... 4.54 gwiazdek na podstawie 13 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

Zilustruj zbiór wszystkich punktów płaszczyzny...

1.135
 Zadanie
1.136
 Zadanie
1.137
 Zadanie

1.138
 Zadanie

1.139
 Zadanie
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
Piotr

30 października 2018
Dzięki!!!
user avatar
Mateusz

27 września 2018
Dziena 👍
user avatar
Miśka

16 września 2018
Dzieki za pomoc!
klasa:
Informacje
Autorzy: Marcin Kurczab, Elżbieta Kurczab, Elżbieta Świda
Wydawnictwo: OE Pazdro
Rok wydania:
ISBN: 9788375940800
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Równania

Dwa wyrażenia algebraiczne, z których przynajmniej jedno zawiera literę, połączone znakiem równości tworzą równanie.

Litera występująca w równaniu to niewiadoma.

Wyrażenie występujące po lewej stronie znaku równości to lewa strona równania, a wyrażenie występujące po prawej stronie to prawa strona równania.

lewa i prawa strona równania

Równanie pierwszego stopnia z jedną niewiadomą to dwa wyrażenia algebraiczne połączone znakiem równości, przy czym w równaniu tym występuje tylko jedna niewiadoma w pierwszej potędze.

Przykłady równań pierwszego stopnia z jedną niewiadomą:

  • $$7x − 11 = 17$$
  • $$8y = 16$$
  • $$3x + 7 = 10 + 2x$$

Rozwiązanie równania z jedną niewiadomą – to liczba, która podstawiona do równania w miejsce niewiadomej spełnia to równanie (czyli po podstawieniu tej liczby w miejsce niewiadomej, lewa strona równania będzie się równać prawej stronie).

Przykład 1.

Sprawdźmy czy liczba 2 spełnia równanie $$3x + 7 = 10 + 2x$$, czyli czy jest rozwiązaniem tego równania.
Podstawiamy liczbę 2 w miejsce niewiadomej x.

  • I sposób
    Obliczamy wartość lewej i prawej strony równania, podstawiając w miejsce x liczbę 2, a następnie porównujemy otrzymane wyniki:

    $$L = 3x + 7 = 3•2+ 7 = 6 + 7 = 13$$
    $$P = 10 + 2x = 10 + 2•2= 10 + 4 = 14$$
    $$13≠14$$, czyli $$L≠P$$

    czyli liczba 2 nie spełnia danego równania, zatem nie jest rozwiązaniem równania.

  • II sposób
    Podstawiamy 2 w miejsce x i sprawdzamy czy otrzymamy równość prawdziwą:

    $$3•2+7=10 + 2•2$$
    $$6 + 7 = 10 + 4$$
    $$13 = 14$$ ← otrzymaliśmy równość fałszywą

    zatem liczba 2 nie spełnia danego równania, zatem nie jest rozwiązaniem równania.

Przykład 2.

Sprawdźmy czy liczba 3 spełnia równanie $$3x + 7 = 10 + 2x$$, czyli czy jest rozwiązaniem tego równania.

  • Podstawiamy liczbę 3 w miejsce niewiadomej x.
    Obliczamy wartość lewej i prawej strony równania, podstawiając w miejsce x liczbę 2, a następnie porównujemy otrzymane wyniki:

    $$L = 3x + 7 = 3•3+ 7 = 9 + 7 = 16$$
    $$P = 10 + 2x = 10 + 2•3= 10 + 6 = 16$$
    $$L = P$$

    Zatem liczba 3 spełnia dane równanie, zatem jest jego rozwiązaniem.
Funkcja ciągła
Funkcja ciągła to intuicyjnie taka funkcja, którą można narysować bez odrywania ołówka od kartki - nie ma żadnych nagłych "przeskoków". Jednak ta definicja, poza tym, że jest mało precyzyjna, zawiera błąd. Na przykład funkcję $$f(x) = frac{1}{x}$$ nazywamy funkcją ciągłą, mimo, że przecież nie da się narysować jej wykresu od $$-1$$ do $$1$$ bez odrywania ołówka. Dzieje się tak, ponieważ funkcja może być ciągła tylko w swojej dziedzinie - poza dziedziną przecież "nie istnieje", więcn nie można nic o niej powiedzieć.

Precyzyjną definicją ciągłości jest to, czy dla każdego $$x f(x)$$ jest równe granicy w tym punkcie. Intuicyjnie wydaje się to poprawne: jeśli coraz bardziej zbliżamy się do punktu $$x_0$$ i jesteśmy coraz bliżej jego wartości, to jeśli w końcu dotrzemy w $$x_0$$, to powinniśmy tam znaleźć wartość właśnie $$f(x_0)$$.

Funkcje ciągłe mają tę ciekawą właściwość, że na przedziale przyjmują wszystkie wartości pośrednie. To znaczy, że jeśli na przykład w punkcie $$x = 0 f(x) = 2$$, a w punkcie $$x = 1 f(x) = -2$$, to wiemy, że w tym przedziale na pewno znajdzie się taki punkt $$a$$, że $$f(a) = 0$$. (Oczywiście funkcja musi być określona na całym tym przedziale)

Ważne jest to, że wykonując operacje arytmetyczne oraz składając funkcje ciągłe otrzymujemy zawsze funkcje ciągłe - dlatego wszystkie "normalne", tzn określone "prostym" wzorem (jak na przykład wielomiany lub funkcje trygonometryczne) będą ciągłe.
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom