Matematyka

Matematyka 7 (Podręcznik, Operon)

Oceń prawdziwość... 4.86 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Matematyka

a) `sqrt(150)=sqrt(25*6)=5sqrt(6) \ \ \ \ \ "prawda"` 

b) `sqrt(40)=sqrt(4*10)=2sqrt(10)!=4sqrt(10) \ \ \ \ \ "fałsz"` 

c) `sqrt(162)=sqrt(81*2)=9sqrt(2) \ \ \ \ \ "prawda"` 

d) `1/2sqrt(8)=1/2sqrt(4*2)=sqrt(2) \ \ \ \ \ "prawda"` 

e) `sqrt(200)+sqrt(18)-sqrt(2)=sqrt(100*2)+sqrt(9*2)-sqrt(2)=10sqrt(2)+3sqrt(2)-sqrt(2)=12sqrt(2)!=13 \ \ \ \ \ "fałsz"` 

f) `sqrt(32)+sqrt(2)+5sqrt(2)=sqrt(16*2)+sqrt(2)+5sqrt(2)=4sqrt(2)+sqrt(2)+5sqrt(2)=10sqrt(2) \ \ \ \ \ "prawda"` 

DYSKUSJA
Informacje
Autorzy: Bożena Kiljańska, Adam Konstantynowicz
Wydawnictwo: Operon
Rok wydania:
Autor rozwiązania
user profile image

Magda

3873

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Działania na pierwiastkach

 

Własności pierwiastkowania: 

  1. Pierwiastek z iloczynu jest równy iloczynowi pierwiastków z tych liczb.


    Dla `a>=0 \ "i" \ b>=0` 

    `sqrt{a*b}=sqrt{a}*sqrt{b}`  


    Dla dowolnych liczb `a \ "i" \ b` mamy:

    `root{3}{a*b}=root{3}{a}*root{3}{b}` 


  2. Pierwiastek z ilorazu jest równy ilorazowi pierwiastków z tych liczb.


    Dla `a>=0 \ "i" \ b>0` mamy: 

    `sqrt{a/b}=sqrt{a}/sqrt{b}` 


    Dla dowolnej liczby `a \ "i" \ b!=0` mamy:   

    `root{3}{a/b}=root{3}{a}/root{3}{b}`  

 

Przykłady:

  • `sqrt{3600}=sqrt{36*100}=sqrt{36}*sqrt{100}=6*10=60` 

  • `root{3}{-64 \ 000}=root{3}{-64*1000}=root{3}{-64}*root{3}{1000}=-4*10=-40`   

  • `sqrt{121/49}=sqrt{121}/sqrt{49}=11/7=1 4/7` 

  • `root{3}{216/512}=root{3}{216}/root{3}{512}=6/8`   
Wyłączanie czynnika przed znak pierwiastka

Podczas wyłączania czynnika przed znak pierwiastka korzystamy z zasady, z której korzystaliśmy podczas mnożenia:
$$√{a×b}=√a×√b$$

Najprościej jest to przedstawić na przykładzie:

Wyłącz czynnik sprzed znak w $$√{18}$$.

Na początku musimy rozłożyć liczbę na takie czynniki, aby przynajmniej pierwiastek jednego z nich był liczbą naturalną. Dlatego $$√{18}$$ rozkładam w ten sposób:

$$√{18}=√{9×2}$$

Wiemy, że $$√{9}$$ wynosi 3, dlatego wystawiamy 3 przed znak pierwiastka:

$$√{18}=√{9×2}=3√{2}$$

Przykłady:

  • $$√{32}=√{16×2}=4√2$$
  • $$∛{54}=∛{27×2}=3∛2$$
Udostępnij zadanie