Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka 7 (Podręcznik, Operon)

Która liczba jest... 4.43 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Matematyka
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium.

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
Informacje
Autorzy: Bożena Kiljańska, Adam Konstantynowicz
Wydawnictwo: Operon
Rok wydania:
Autor rozwiązania
user profile

Magda

4333

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Potęgowanie liczb całkowitych

Iloczyn jednakowych czynników można przedstawić w postaci potęgi.

potegowanie1

Symbol $$a^n$$ oznacza n-krotne mnożenie liczby a przez siebie; czyta się go a podniesione do n-tej potęgi, a do n-tej potęgi, a do potęgi n-tej.

potegowanie2
 

Przykłady:

  • $$3•3= 3^2$$ ← czytamy: 3 do potęgi drugiej lub druga potęga liczby 3,
  • $$5•5•5= 5^3$$ ← czytamy: 5 do potęgi trzeciej lub trzecia potęga liczby 5,
  • $$(-1)•(-1)•(-1)•(-1)= (-1)^4$$ ← czytamy: -1 do potęgi czwartej lub czwarta potęga liczby -1.


Dowolna liczba podniesiona do potęgi pierwszej to ta sama liczba → $$a^1 = a$$,

Zerowa potęga dowolnej liczby jest zawsze liczbą 1 → $$a^0 = 1$$.

  Uwaga

Zero podniesione do zerowej potęgi jest nieokreślone (jest niewykonalne).

Przykłady:

  • $$5^0 = 1$$
  • $$(-8)^0 = 1$$
  • $$0^2 = 0$$
  • $$(-12)^1 = -12$$

Drugą potęgę liczby a nazywamy także kwadratem liczby a i zapisujemy $$a^2$$

Trzecią potęgę liczby a nazywamy także sześcianem liczby a i zapisujemy $$a^3$$
 

  • Dowolna liczba (dodatnia lub ujemna) podniesiona do parzystej potęgi będzie zawsze liczbą dodatnią.

    Przykłady:

    • $$(−3)^4 = 81$$
    • $$2^2 = 4$$
  • Liczba ujemna podniesiona do potęgi nieparzystej będzie zawsze liczba ujemną.

    Przykład:

    • $$(−2)^3 = (−8)$$
Potęga o wykładniku naturalnym

Potęga to wielokrotne pomnożenie przez siebie takiego samego czynnika.


Potęgę liczby a o wykładniku n oznaczamy symbolem `a^n`, gdzie a to podstawa potęgi, n to wykładnik potęgi.  

Powyższa potęga oznacza, że dokonamy n - krotnego mnożenie czynnika a.

`a^n=#underbrace(a*a*...*a)_("n czynników")` 

Przykłady:

  • `3^4=3*3*3*3=81` 

  • `2^3=2*2*2=8`  

Gdy liczbę dodatnią lub ujemną podnosimy do potęgi parzystej, wówczas wynikiem będzie zawsze liczba dodatnia.

Gdy wykładnikiem potęgi liczby ujemnej będzie liczba nieparzysta to wynik będzie zawsze ujemny.

Przykłady:

  • `(-3)^6=3^6` 

  • `(-6)^5=-6^5`  

  • `(-1/2)^4=(1/2)^4` 

  • `(-1/7)^3=-(1/7)^3` 

Gdy podnosimy ułamek zwykły do danej potęgi, to wykonujemy oddzielnie potęgowanie dla licznika i mianownika. 

Przykłady

  • `(2/3)^2=2^2/3^2=4/9` 

  •  `(1/2)^4=1^4/2^4=1/16`  


Zapamiętaj:

  • `a^0=1 \ \ \ "dla" \ \ \ a!=0`  

  • `a^1=a`    
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom