Matematyka

Matematyka 7 (Podręcznik, Operon)

Wykonaj działania... 4.57 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Matematyka
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
Informacje
Autorzy: Bożena Kiljańska, Adam Konstantynowicz
Wydawnictwo: Operon
Rok wydania:
Autor rozwiązania
user profile image

Magda

3874

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dodawanie i odejmowanie ułamków

Dodawanie i odejmowanie ułamków zwykłych

Dodawanie lub odejmowanie ułamków mających jednakowe mianowniki – dodajemy lub odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

Przykłady: 

  • `4/7+6/7=10/7=1 3/7` 

  • `1 3/7+2/7=1 5/7`   

  • `1 3/5+4 2/5=5 5/5=6` 

  •  `5/6-2/3=3/6=1/2` 

  • `1 -4/9=9/9-4/9=5/9`   

  • `3 1/6-1 5/6=2 7/6-1 5/6=1 2/6=1 1/3`  


Dodawaniu i odejmowaniu ułamków o różnych mianownikach - ułamki sprowadzamy do wspólnego mianownika.

Przykłady:

  • `3/7+1/3=9/21+7/21=16/21` 

  • `2 1/5+3/6=2 6/30+15/30=2 21/30`   

  • `1 1/4+3 2/5=1 5/20+3 8/20=4 13/20` 

  • `4/5-2/3=12/15-10/15=2/15` 

  • `2 1/3-1/9=2 3/9-1/9=2 2/9`   

  • `2 5/8-1 3/5=2 25/40-1 24/40=1 1/40`  

 

Dodawanie i odejmowanie ułamków dziesiętnych 

Aby dodać lub odjąć dwa ułamki dziesiętne należy chwilowo pominąć przecinek i wykonać działania na liczbach naturalnych. 

Następnie w wyniku wstawiamy przecinek w takim miejscu, aby po przecinku było tyle samo cyfr, ile występuje w każdym z ułamków. 

Przykłady:

  • `57,879+3,32=57,879+3,320=61,199`  
    [57 879+3320=61 199, więc 57,879+3,320=61,199, gdyż w każdym ułamku mamy po trzy cyfry po przecinku, więc w wyniku również muszą być trzy cyfry po przecinku]
     
  • `3,45-2,34=1,11` 
    [345-234=111, więc 3,45-2,31=1,11 gdyż w każdym ułamku mamy po dwie cyfry po przecinku, więc w wyniku również muszą być dwie cyfry po przecinku]


Dodawanie i odejmowanie ułamków zwykłych oraz dziesiętnych

Gdy dodajemy lub odejmujemy ułamek dziesiętny i ułamek zwykły wystarczy doprowadzić je do wspólnej postaci. 

Przykłady:

  • `3/4+2,2=0,75+2,20=2,95` 

  • `2,5-3/4=2 1/2-3/4=2 2/4-3/4=1 6/4-3/4=1 3/4`   
Ułamki dziesiętne

Kolejny z omawianych typów ułamków to ułamki dziesiętne. Są to ułamki zwykłe o mianowniku będącym potęgą liczby 10 (10,100,1000,1000000 itd.). Aby uzyskać taki ułamek wystarczy, ze doprowadzimy metodami rozszerzania lub skracania do takiej liczby w mianowniku. Możemy także podzielić licznik przez mianownik.

Ułamek dziesiętny został stworzony po to, aby ułatwić ludzkości przeliczanie części. Badania marketingowe potwierdzają, że cena odpowiednio obniżona o 1-10gr działa cuda w porównaniu do pierwotnej.

Przykłady ułamków dziesiętnych:

  • $$0,4$$
  • $$5,25$$
  • $$9,135$$

Uwaga!

Możemy dowolnie dopisywać 0 za ostatnią cyfrą po przecinku np. $$0,6=0,60=0,600$$ , ale nie możemy ich usunąć przed tą cyfrą zatem równanie $$0,06=0,6$$ jest fałszywe!

Doprowadzenie do ułamka dziesiętnego odbywa się głównie na dwa sposoby:

  1. Rozszerzanie lub skracanie ułamka
    Doprowadzamy poznaną wcześniej metodą do wymaganego mianownika.

    Przykłady:

    • $${3}/{5}={3×2}/{5×2}={6}/{10}=0,6 $$
    • $${11}/{4}=2{3}/{4}=2{3×25}/{4×25}=2{75}/{100}=2,75$$
  2. Dzielenie licznika przez mianownik
    W tym przypadku obliczenia będziemy wykonywać pod kreską.

    Przykład:

    • p1

      $${1}/{8}=0,125$$

Specjalnym typem ułamków dziesiętnych są ułamki okresowe, gdzie okresem nazywamy powtarzające się w nieskończoność cyfry za przecinkiem, okres oznaczamy symbolami $$( )$$.

Przykład:

p2

$${1}/{6}=0,166666=0,1(6)$$

Zobacz także
Udostępnij zadanie