Matematyka

Kasia otrzymała na półrocze... 4.57 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Matematyka

Średnia ocen to suma wszystkich ocen podzielona przez ich ilość.

Suma wszystkich ocen to  

Ilość wszystkich ocen to 11.

 

Odp. Średnia ocen to 4,73.

DYSKUSJA
klasa:
Informacje
Autorzy: Bożena Kiljańska, Adam Konstantynowicz
Wydawnictwo: Operon
Rok wydania:
ISBN: 9788378795285
Autor rozwiązania
user profile

Magda

7142

Nauczyciel

Matematyk z 22-letnim doświadczeniem, Uwielbia sport, przede wszystkim narciarstwo biegowe.

Wiedza
Średnia i mediana

Średnia arytmetyczna to średni wynik spośród wielu innych wyników.


Sposób obliczania średniej: 

`"średnia"=("suma wyników")/("liczba wyników")` 

Średnia arytmetyczna danego zestawu liczb to iloraz sumy tych liczb przez ich ilość. 

Przykład:

W klasie 7a jest 10 osób. Na koniec roku szkolnego uczniowie tej klasy uzyskali z matematyki następujące oceny: 6, 6, 5, 5, 5, 4, 3, 3, 3, 2. 

Ile wynosiła średnia ocen z matematyki na koniec roku w tej klasie?  

`"średnia"=(6+6+5+5+5+4+3+3+3+2)/10=42/10=4,2` 

Odpowiedź: Średnia ocen z matematyki na koniec roku w tej klasie wynosiła 4,2.


 

Mediana to wynik środkowy uporządkowanego malejąco lub rosnąco zbioru wyników.

  • Jeśli mamy nieparzystą liczbę wyników, to mediana jest wyrazem środkowym. 

  • Jeśli mamy parzystą liczbę wyników, to mediana jest średnią arytmetyczną dwóch środkowych wyrazów. 

 
Przykład:

W klasie 7a jest 10 osób. Na koniec roku szkolnego uczniowie tej klasy uzyskali z matematyki następujące oceny: 6, 6, 5, 5, 5, 4, 3, 3, 3, 2. 

Jaka jest mediana ocen na koniec roku z matematyki w tej klasie?

Oceny ustawiamy w kolejności malejącej: 6, 6, 5, 5, 5, 4, 3, 3, 2. Jest ich 10, czyli parzysta ilość. 

Mediana będzie więc średnią arytmetyczną dwóch środkowych wyników. 

`"mediana"=(5+4)/2=9/2=4,5`  

Odpowiedź: Mediana ocen na koniec roku w tej klasie wynosi 4,5.

Zaokrąglanie ułamków dziesiętnych

Ułamek dziesiętny możemy zaokrąglać, w miarę potrzeb, do pewnego rzędu, czyli podawać go z dokładnością do określonej liczby miejsc po przecinku - do jedności, do części dziesiątych, części setnych itd. Jeżeli zaokrąglamy ułamek do pewnego miejsca po przecinku (czyli do danego rzędu) wtedy odrzucamy wszystkie cyfry znajdujące się na prawo od miejsca do którego zaokrąglamy i:

  • Jeżeli pierwsza z odrzuconych cyfr jest mniejsza od 5, to ostatnią cyfrę naszego przybliżenia zostawiamy bez zmian (jest to tak zwane zaokrąglenie w dół lub zaokrąglenie z niedomiarem). Jeżeli odrzucone cyfry były położone przed przecinkiem, należy na ich pozycjach wpisać zera,
  • Jeżeli pierwsza z odrzuconych cyfr jest większa lub równa 5, to ostatnią cyfrę naszego przybliżenia zwiększamy o 1 (jest to tak zwane zaokrąglenie w górę lub zaokrąglenie z nadmiarem). Jeżeli odrzucone cyfry były położone przed przecinkiem, należy na ich pozycjach wpisać zera.

Przykłady:

  • Zaokrąglenie liczby 2,871 do części setnych:

    $$2,871 ≈ 2,87$$, bo 1 < 5
     
  • Zaokrąglenie liczby 8,899 do części dziesiątych:

    $$8,899 ≈ 8,9$$, bo 9 > 5
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom