Matematyka

Matematyka z plusem 3 (Podręcznik, GWO)

Jakie jest pole obszaru zamalowanego... 4.67 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Matematyka
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
Mariusz

10 lutego 2018
Dzięki!!!!
Informacje
Autorzy: Praca zbiorowa
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Symterie

Figury mogą być symetryczne względem punktu i prostej. Prosta, względem, której figury są symetryczne, nazywamy osią symetrii. Punkt, względem, którego figury są symetryczne, nazywamy środkiem symetrii.

  1. Figura, w której możemy pociągnąć oś symetrii nazywamy figurą osiowosymetryczną.

  2. Figura, w której możemy wyznaczyć środek symetrii nazywamy figurą środkowosymetryczną.

 
Symetria osiowa (względem osi współrzędnych)
Czyl odbicie wykresu względem osi Y lub osi X. Jak się zachowa wzór przy takiej transformacji?

Odbicie względem osi X: $$-f(x)$$

Odbicie względem osi Y: $$f(-x)$$

Weźmy ponownie nasz bazowy wykres:

wyk1
 Przekształćmy go najpierw względem osi X. Symetria osiowa względem osi X polega na znalezieniu dla każdego punktu jego odbicia po przeciwnej stronie osi X, takiego że odcinek łączący wyjściowy punkt i jego odbicie jest prostopadły do osi X i przecina ją w połowie. Brzmi skomplikowanie, ale chodzi o zwykłe odbicie.

wyk4

Teraz musimy jeszcze odbić względem osi Y czyli $$f(-x)$$:

wyk5

Uwaga!


Zazwyczaj w zadaniach określone zostaną złożone transformacje, czyli wykorzystanie wektora przesunięcia i symetrii osiowej jednocześnie, a wektor będzie przesuwał i po osi x i po osi y. Dlatego dobrze jest najpierw rozpoznać co zaszło.


Najlepiej pokazać to na jeszcze jednym przykładzie:

Jakaś nieznana funkcja bazowa f(x) została przetransformowana do innej funkcji $$g(x)=2x+1$$ przy pomocy wektora [2;5]. Znajdź tę bazową funkcję.
Zrobimy to zadanie na dwa sposoby:

Sposób 1, przez sprowadzenie do postaci f(x-a)+b:

Szukamy tutaj bazowego wykresu. Skoro zawsze transformacją o wektor było f(x-a)+b gdzie a i b to dowolne liczby, to tutaj nasze $$a=2$$ oraz $$b=5$$. Mamy więc przesunięcie o 2 w prawo i 5 w górę, a nasz bazowy wykres to taki, który zostanie po usunięciu a i b. Musimy doprowadzić nasze g(x) do postaci $$g(x)=f(x-2)+5$$. W tym celu musimy wydzielić w funkcji człon x-2: $$g(x)=2x+1=2(x-2)+2*2+1=2(x-2)+5$$. Teraz "usuwamy" a i b (wstawiamy zamiast nich zera): $$f(x)=2(x-0)+0=2x$$

Sposób 2, przez użycie wektora przeciwnego:

W poprzedniej metodzie "usunęliśmy" a i b, czyli wstawiliśmy zamiast nich zera. Ten sam efekt uzyskalibyśmy odejmując a i b w odpowiednich miejscach, czyli transformując o wektor [-2;-5]. Zresztą czego innego można się spodziewać? Skoro przesunęliśmy bazową funkcję o wektor [a;b], odzyskamy ją, przesuwając to co powstało w drugą stronę, czyli o wektor przeciwny [-a;-b]. Zróbmy to więc! Nasze "to co powstało" to $$g(x)=2x+1$$. Przesuńmy je o [-2;-5]:

$$f(x)=g(x-(-2))+(-5)=g(x+2)-5=2(x+2)+1-5=2x+4+1-5=2x$$
Zobacz także
Udostępnij zadanie