Zapisz w postaci iloczynu - Zadanie 3.8: Prosto do matury 1. Zakres podstawowy i rozszerzony - strona 19
Matematyka
Prosto do matury 1. Zakres podstawowy i rozszerzony (Podręcznik, Nowa Era)
Zapisz w postaci iloczynu 4.14 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka
Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy I liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do rozwiązania undefined
Diana

27 września 2017
dzięki!!!!
klasa:
I liceum
Informacje
Autorzy: Maciej Antek, Krzysztof Belka, Piotr Grabowski
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326721687
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Dodawanie, odejmowanie i mnożenie wektorów przez liczbę
Dodawanie wektorów można interpretować geometrycznie na równoważne sobie sposoby:

1) W końcu jednego wektora zaczepiamy drugi - ich suma jest wtedy wektorem prowadzącym od początku pierwszego do końca drugiego.

1 dodawanie

2) Jeśli oba wektory są zaczepione w tym samym punkcie, ich suma to przekątna równoległoboku utworzonego przez nie (rysunek).

2 dodawanie

Jeśli mamy natomiast dodać je analitycznie, wystarczy po prostu dodać ich odpowiednie współrzędne. Zakładając, ze ${v}↖{→} = [v_a, v_b]$, a ${u}↖{→} = [u_a, u_b]$, współrzędne wektora będącego ich sumą: ${t}↖{→} = {v}↖{→} + {u}↖{→} $ są równe ${t}↖{→} = [u_a + v_a,u_b + v_b]$.

Odejmowanie wektora to po prostu dodawanie wektora o przeciwnym zwrocie:

mając różnicę ${t}↖{→} = {v}↖{→} - {u}↖{→} $ możemy ją zapisać jako ${t}↖{→} = {v}↖{→} + (-{u}↖{→}) $. Wektor $(-{u}↖{→})$ to po prostu wektor ${u}↖{→}$ przeciwnie skierowany (przed obiema współrzędnymi dostawiamy minus).

Mnożenie wektora ${v}↖{→}$ przez liczbę $a$ to w ujęciu geometrycznym dodanie do siebie $a$ razy wektora ${v}↖{→}$, zaś w ujęciu analitycznym - pomnożenie przez liczbę $a$ obu jego współrzędnych.
3 mnożenie
Granice funkcji
Przy okazji ciągów poznaliśmy definicję "granicy". W ramach przypomnienia: była to liczba, do jakiej dążył ciąg - od pewnego miejsca kolejne wyrazy ciągu coraz bardziej zbliżały się do niej.

Granica funkcji jest pojęciem rozwijającym granicę ciągu. Istnieją dwie definicje. Funkcja ma granicę w punkcie $x_0$, jeśli:

I. (Definicja Heinego)
dla każdego ciągu ($x_n$) takiego że $lim↙{n →∞} x_n = x_0$ zachodzi $lim↙{n →∞} f(x_n) = g$. (inaczej mówiąc: jeśli wybierzemy dowolny ciąg zbieżny do $x_0$ i ciąg $f(x_n) będzie dążył do $g$, to funkcja ma w punkcie $x_0$ granicę równą $g$).

II. (Definicja Cauchego)
dla każdej liczby $ε > 0$ istnieje liczba $△$ > $0$ taka, że jeśli $0$ < $|x - x_0|$ < $△$, to $|f(x) - g|$ < $ε$

1

Definicja Cauchego może wydawać się skomplikowana, ale tak naprawdę jest ścisłym zapisem tego, że jeśli weźmiemy dowolną "wysokość" $ε$, to znajdziemy taką liczbę $△$, że dowolne dwa punkty na wykresie leżące bliżej (w poziomie) niż $△$ będą miały odległość w pionie mniejszą niż $ε$.

Kolejne pojęcie: granica jesdnostronna - oznacza po prostu, że "zbliżamy się" do punktu $x_0$ tylko z jednej strony.
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom