Matematyka

MATeMAtyka 2. Zakres rozszerzony (Zeszyt ćwiczeń, Nowa Era)

Które z liczb należących do zbioru 4.5 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

rownanie matematyczne 

Można byłoby podstawiać kolejne liczby w miejsce x, ale możemy też klasycznie rozwiązać równanie. 

Szukamy pierwiastków wielomianu w, więc chcemy rozwiązać równanie:

rownanie matematyczne 

 

Podstawmy:

rownanie matematyczne 

Wtedy równanie jest postaci:

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

Odrzucamy pierwsze rozwiązanie (jest ujemne). Mamy więc:

rownanie matematyczne 

Pierwiastkami równania są więc liczby -3 oraz 3. 

 

 

 

rownanie matematyczne 

Na pierwszy rzut oka nie widać sprytnego rozwiązania równania, więc podstawmy.

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

 

Pierwiastkami wielomianu w są liczby -2, 1, 3.

 

rownanie matematyczne 

Zauważmy, że wielomian w można łatwo zapisać w postaci iloczynowej.

rownanie matematyczne 

Pierwiastkami wielomianu w są więc liczby -2, 4, -4. 

Z liczb należących do podanego zbioru jedynym pieriwastkiem wielomianu w jest -2.

 

 

rownanie matematyczne 

Na pierwszy rzut oka nie widać sprytnego rozwiązania równania, więc podstawmy.

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

 

DYSKUSJA
Informacje
Autorzy: Wojciech Babiański , Lech Chańko, Joanna Czarnowska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Wielokrotności

Wielokrotność liczby otrzymamy mnożąc tę liczbę przez kolejne liczby naturalne. 

Uwaga!!!

0 jest wielokrotnością każdej liczby naturalnej. 

Każda liczba naturalna jest wielokrotnością liczby 1. 


Przykłady
:

  • wielokrotności liczby 4 to: 
    • 0, bo  `0*4=0` 
    • 4, bo  `1*4=4`  
    • 8, bo  `2*4=8`  
    • 12, bo  `3*4=12`  
    • 16, bo  `4*4=16`  
    • 20, bo  `5*4=20` , itd.  
       
  • wielokrotności liczby 8 to:
    • 0, bo  `0*8=0`  
    • 8, bo  `1*8=8`  
    • 16, bo  `2*8=16`  
    • 24, bo  `3*8=24`  
    • 32, bo  `4*8=32`  
    • 40, bo  `5*8=40`, itd.  
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom