Matematyka

Poniższe wielokąty są zbudowane ... 4.56 gwiazdek na podstawie 16 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Poniższe wielokąty są zbudowane ...

2
 Zadanie

3
 Zadanie
1
 Zadanie

Wielokąt zbudowany jest z kwadratu oraz trójkąta prostokątnego równoramiennego.

Podpiszmy długości boków, które znamy. Oznaczmy ramiona trójkąta przez "a".

Jest to trójkąt prostokątny równoramienny, więc miary kątów przy podstawie wynoszą 45°.

Chcemy obliczyć długość boku "a". Korzystamy z własności trójkąta o kątach 45°, 45° i 90°.

 

Wielokąt zbudowany jest z trójkąta równobocznego oraz trójkąta o kątach 30°, 60° i 90°.

Podpiszmy długości boków, które znamy. Oznaczmy ramiona trójkąta o kątach 30°, 60° i 90° przez "a" oraz "b".

 

 

 

 

 

DYSKUSJA
user avatar
Majka

1

3 maja 2018
Dzięki za pomoc :):)
user avatar
Jerzy

1

6 kwietnia 2018
Dzieki za pomoc :)
user avatar
Jagoda

1

23 marca 2018
Dziena 👍
user avatar
Bogdan

3

1 listopada 2017
Dzięki za pomoc :)
user avatar
Pola

2

10 października 2017
Dzięki za pomoc
klasa:
Informacje
Autorzy: Jacek Lech
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile

Justyna

15412

Nauczyciel

Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $$1/{10}= 0,1$$
  • $$2/{100}= 0,02$$
  • $${15}/{100}= 0,15$$
  • $$3/{1000}= 0,003$$
  • $${25}/{10}= 2,5$$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom