Dany jest trójkąt prostokątny o bokach - Zadanie 3: Liczy się matematyka 1 - strona 283
Matematyka
Liczy się matematyka 1 (Podręcznik, WSiP)
Dany jest trójkąt prostokątny o bokach 4.44 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka
Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy I gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Select...
Informacje
Autorzy: Adam Makowski, Tomasz Masłowski, Anna Toruńska
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Równania

Dwa wyrażenia algebraiczne, z których przynajmniej jedno zawiera literę, połączone znakiem równości tworzą równanie.

Litera występująca w równaniu to niewiadoma.

Wyrażenie występujące po lewej stronie znaku równości to lewa strona równania, a wyrażenie występujące po prawej stronie to prawa strona równania.

lewa i prawa strona równania

Równanie pierwszego stopnia z jedną niewiadomą to dwa wyrażenia algebraiczne połączone znakiem równości, przy czym w równaniu tym występuje tylko jedna niewiadoma w pierwszej potędze.

Przykłady równań pierwszego stopnia z jedną niewiadomą:

  • $7x − 11 = 17$
  • $8y = 16$
  • $3x + 7 = 10 + 2x$

Rozwiązanie równania z jedną niewiadomą – to liczba, która podstawiona do równania w miejsce niewiadomej spełnia to równanie (czyli po podstawieniu tej liczby w miejsce niewiadomej, lewa strona równania będzie się równać prawej stronie).

Przykład 1.

Sprawdźmy czy liczba 2 spełnia równanie $3x + 7 = 10 + 2x$, czyli czy jest rozwiązaniem tego równania.
Podstawiamy liczbę 2 w miejsce niewiadomej x.

  • I sposób
    Obliczamy wartość lewej i prawej strony równania, podstawiając w miejsce x liczbę 2, a następnie porównujemy otrzymane wyniki:

    $L = 3x + 7 = 3•2+ 7 = 6 + 7 = 13$
    $P = 10 + 2x = 10 + 2•2= 10 + 4 = 14$
    $13≠14$, czyli $L≠P$

    czyli liczba 2 nie spełnia danego równania, zatem nie jest rozwiązaniem równania.

  • II sposób
    Podstawiamy 2 w miejsce x i sprawdzamy czy otrzymamy równość prawdziwą:

    $3•2+7=10 + 2•2$
    $6 + 7 = 10 + 4$
    $13 = 14$ ← otrzymaliśmy równość fałszywą

    zatem liczba 2 nie spełnia danego równania, zatem nie jest rozwiązaniem równania.

Przykład 2.

Sprawdźmy czy liczba 3 spełnia równanie $3x + 7 = 10 + 2x$, czyli czy jest rozwiązaniem tego równania.

  • Podstawiamy liczbę 3 w miejsce niewiadomej x.
    Obliczamy wartość lewej i prawej strony równania, podstawiając w miejsce x liczbę 2, a następnie porównujemy otrzymane wyniki:

    $L = 3x + 7 = 3•3+ 7 = 9 + 7 = 16$
    $P = 10 + 2x = 10 + 2•3= 10 + 6 = 16$
    $L = P$

    Zatem liczba 3 spełnia dane równanie, zatem jest jego rozwiązaniem.
Odejmowanie liczb całkowitych

Każde odejmowanie liczb całkowitych można zastąpić odpowiednim dodawaniem.

Przykłady:

  • $3 − (−9) = 3 + 9 = 12$
  • $(−4) − 5 = (-4) + (-5) = −9$
  • $(−8) − (−11) = (−8) + 11 = 11 + (−8) = 11 − 8 = 3$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom