Matematyka

Napisz wzór funkcji liniowej, która przyjmuje wartości dodatnie dla argumentów mniejszych od -1, 4.5 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Napisz wzór funkcji liniowej, która przyjmuje wartości dodatnie dla argumentów mniejszych od -1,

21
 Zadanie
22
 Zadanie
23
 Zadanie
24
 Zadanie

25
 Zadanie

Funkcja przyjmuje wartości dodatnie dla argumentów mniejszych od -1, a wartości ujemne dla argumentów większych od -1. 
Miejscem zerowym funkcji jest więc x=-1. 
Oznacza to, że funkcja przecina oś X w punkcie (-1,0). 

Wstawiamy współrzędne tego punktu do wzoru funkcji:
`0=a*(-1)+b` 
`0=-a+b` 

Do wykresu tej funkcji należy również punkt (0,-4). 
Punkt, którego pierwsza współrzędna jest równa 0, to punkt znajdujący się na osi Y.
Jego druga współrzędna określa wyraz wolny funkcji, czyli b.
Oznacza to, że b=-4.

Wstawiamy tę wartość do wzoru funkcji.
`0=-a-4` 
Możemy teraz już obliczyć wartość a.
`a=-4` 


Znamy już teraz wartość a i b. Możemy napisać wzór funkcji. Ma on postać:
`y=-4x-4`  

DYSKUSJA
Informacje
Matematyka 2001
Autorzy: Dubiecka-Kruk Barbara, Dubiecka Anna, Bazyluk Anna
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Liczby mieszane i ich zamiana na ułamek niewłaściwy
ulamek

Liczba mieszana jest to suma dwóch składników, z których jeden jest liczbą naturalną (składnik całkowity), a drugi ułamkiem zwykłym właściwym (składnik ułamkowy).

$$4 1/9= 4 + 1/9 $$ ← liczbę mieszana zapisujemy bez użycia znaku dodawania +.

Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: mianownik składnika ułamkowego mnożymy przez składnik całkowity i do tego iloczynu dodajemy licznik składnika ułamkowego. Mianownik natomiast jest równy mianownikowi składnika ułamkowego.

Przykład:

$$3 1/4= {3•4+1}/4= {13}/4$$
 
Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $$1 mm^2$$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $$1 mm^2$$
  • $$1 cm^2$$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $$cm^2$$
  • $$1 dm^2$$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $$1 dm^2$$
  • $$1 m^2 $$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $$1 m^2$$
  • $$1 km^2$$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $$1 km^2$$
  • $$1 a$$ (ar) → pole kwadratu o boku 10 m jest równe 100 $$m^2$$
  • $$1 ha$$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $$m^2$$

Zależności między jednostkami pola:

  • $$1 cm^2 = 100 mm$$; $$1 mm^2 = 0,01 cm^2$$
  • $$1 dm^2 = 100 cm^2 = 10 000 mm^2$$; $$1 cm^2 = 0,01 dm^2$$
  • $$1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$$; $$1 dm^2 = 0,01 m^2$$
  • $$1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$$; $$1 ha = 0,01 km^2$$
  • $$1 a = 100 m^2$$; $$1 m^2 = 0,01 a$$
  • $$1 ha = 100 a = 10 000 m^2$$; $$1 a = 0,01 ha$$

Przykłady wyprowadzania powyższych zależności:

  • $$1 cm^2 = 10mm•10mm=100$$ $$mm^2$$
  • $$1 cm^2 = 0,1dm•0,1dm=0,01$$ $$dm^2$$
  • $$1 km^2 = 1000m•1000m=1000000$$ $$m^2$$
Zobacz także
Udostępnij zadanie