Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka 2001 (Podręcznik, WSiP)

Marta narysowała kilka trójkątów prostokątnych i na ich bokach zbudowała kwadraty. 4.6 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Marta narysowała kilka trójkątów prostokątnych i na ich bokach zbudowała kwadraty.

Kwadraty na trójkącie
 Zadanie

`->` 

`"Jeśli dodamy"\ "P"_"a"\"i P"_"b"\"to otrzymamy P"_"c"` 

`"np. P"_"a"=1,\ "P"_"b"=4,\ "P"_"c"="P"_"a"+"P"_"b"=1+4=5` 

 

`"Tabelka: "`

 

`"P"_"a"`

`"P"_"b"`

`"P"_"c"`

`"I."`

`1`

`25`

`26 (1+25)`

`"II."`

`1`

`36`

`37 (1+36)`

`"III."`

`4`

`4`

`8 (4+4)`

`"IV."`

`4`

`25`

`29 (4+25)`

`"V."`

`9`

`9`

`18 (9+9)`

`"VI."`

`9`

`16`

`25 (9+16)`

`"VII."`

`9`

`25`

`34 (9+25)`

`"VIII."`

`9`

`36`

`45 (9+36)`

`"IX."`

`16`

`25`

`41 (16+25)`

`"X."`

`16`

`36`

`52 (16+36)`

`"XI."`

`25`

`25`

`50 (25+25)`

`"XII."`

`25`

`36`

`61 (25+36)`

`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`->`

`"Suma pól kwadratów zbudowanych na przyprostokątnych trójkąta prostokątnego" `
`"jest równa polu kwadratu zbudowanego na przeciwprostokątnej trójkąta."`
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`->`

`"Pole kwadratu o boku długości a to:"`
`"P"_"a"="a"^2` 

`"Pole kwadratu zbudowanego na boku o długości c to:"`
`"P"_"c"="c"^2` 
`ul(ul( \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ))` 


`->`

`"Zależność między polami kwadratów to"\ ("P"_"a"+"P"_"b"="P"_"c")":"`
`"a"^2+"b"^2="c"^2` 

DYSKUSJA
Informacje
Autorzy: Dubiecka-Kruk Barbara, Dubiecka Anna, Bazyluk Anna
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Wyrażenie dwumianowane

Wyrażenia dwumianowe to wyrażenia, w których występują dwie jednostki tego samego typu.

Przykłady: 5 zł 30 gr, 2 m 54 cm, 4 kg 20 dag.

Wyrażenia dwumianowe możemy zapisać w postaci ułamka dziesiętnego.

Przykład: 3 m 57 cm = 3,57 cm , bo 57 cm to 0,57 m.

Jednostki:

  • 1 cm = 10 mm; 1 mm = 0,1 cm
  • 1 dm = 10 cm; 1 cm = 0,1 dm
  • 1 m = 100 cm; 1 cm = 0,01 m
  • 1 m = 10 dm; 1 dm = 0,1 m
  • 1 km = 1000 m; 1 m = 0,001 km
  • 1 zł = 100 gr; 1 gr = 0,01 zł
  • 1 kg = 100 dag; 1 dag = 0,01 kg
  • 1 dag = 10 g; 1 g = 0,1 dag
  • 1 kg = 1000 g; 1 g = 0,001 kg
  • 1 t = 1000 kg; 1 kg = 0,001 t

Przykłady zamiany jednostek:

  • 10 zł 80 gr = 1000 gr + 80 gr = 1080 gr
  • 16 gr = 16•0,01zł = 0,16 zł
  • 1 zł 52 gr = 1,52 zł
  • 329 gr = 329•0,01zł = 3,29 zł
  • 15 kg 60 dag = 1500dag + 60dag = 1560 dag
  • 23 dag = 23•0,01kg = 0,23 kg
  • 5 kg 62 dag = 5,62 kg
  • 8 km 132 m = 8000 m+132 m = 8132 m
  • 23 cm 3 mm = 230 mm + 3 mm = 233 mm
  • 39 cm = 39•0,01m = 0,39 m
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom