Matematyka

Podróż samochodem z Warszawy do ... 4.5 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Matematyka

Podróż samochodem z Warszawy do ...

1
 Zadanie

2
 Zadanie

3
 Zadanie

a)

Przyjmujemy, że kąt pełny odpowiada 36 godzinom. 

Pan Nowak prowadził samochód przez 5/9 czasu. Obliczmy 5/9 z 360.

`5/strike9^1*strike360^40=200`

Miara kąta odpowiadajaca czasowi przeznaczonemu na prowadzenie samochodu to 200°.

 

b)

Pan Nowak na sen przeznaczył 7/18 czasu. Obliczmy 7/18 z 360.

`7/strike18^1*strike360^20=140`

Miara kąta odpowiadajaca czasowi przeznaczonemu na sen to 140°.

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ )`

Cała podróż trwała 36 godzin.

Obliczmy ile godzin przeznaczył pan Nowak na posiłki.

Na początek obliczmy, ile czasu przeznaczył na poszczególne czynności.

Przez 5/9 czasu prowadził samochód. Obliczamy 5/9 z 36.

`5/strike9^1*strike36^4=20`

Pan Nowak prowadził samochód przez 20 godzin.

 

Przez 7/18 czasu przeznaczył na sen. Obliczamy 7/18 z 36.

`7/strike18^1*strike36^2=14`

Pan Nowak na sen przeznaczył 14 godzin.

 

Pozostały czas poswięcił na posiłki. 

`36-(20+14)=36-34=2`

Pan Nowak na posiłki przeznaczył 2 godziny.

`ul(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )`

Pan Nowak przeznaczył 2 godziny na posiłki. Posiłki stanowią 2/36 całego czasu.

Obliczmy 2/36 z 360.

`2/strike36^1*strike360^10=20`

Kąt odpowiadajacy czasowi przeznaczonemu na posiłki ma miare 20°.

 

c)

Rozkład czasu podróży pana Nowaka.

 

DYSKUSJA
Informacje
Matematyka 2001
Autorzy: Praca zbiorowa
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Dodawanie pisemne

Krok po kroku jak wykonywać dodawanie pisemne:

  1. Składniki zapisujemy jeden pod drugim tak, by cyfry jedności tworzyły jedną kolumnę, cyfry dziesiątek – drugą, cyfry setek – trzecią, itd. (czyli cyfry liczb wyrównujemy do prawej strony), a następnie oddzielamy je poziomą kreską.

    dodawanie1
     
  2. Dodawanie prowadzimy od strony prawej do lewej. Najpierw dodajemy jedności, czyli ostatnie cyfry w dodawanych liczbach – w naszym przykładzie będzie to 9 i 3. Jeżeli uzyskana suma jest większa od 9, to w kolumnie jedności pod kreską piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny dziesiątek.
    W naszym przykładzie mamy $$9 + 3 = 12$$, czyli w kolumnie jedności piszemy 2, a 1 przenosimy do kolumny dziesiątek.

    dodawanie2
     
  3. Następnie dodajemy dziesiątki naszych liczb wraz z cyfrą przeniesioną i postępujemy jak poprzednio, czyli jeśli uzyskana suma jest większa od 9, to w kolumnie dziesiątek piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny setek.
    W naszym przykładzie otrzymamy: $$1 + 5 + 6 = 12$$, czyli w kolumnie dziesiątek piszemy 2, a 1 przenosimy do kolumny setek.

    dodawanie3
     
  4. Dodajemy cyfry setek wraz z cyfrą przeniesioną i wynik zapisujemy pod kreską.
    W naszym przykładzie mamy: $$1+2+1=4$$ i wynik ten wpisujemy pod cyframi setek.

    dodawanie4
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik dodawania pisemnego.
    W naszym przykładzie sumą liczb 259 i 163 jest liczba 422.

Cechy podzielności liczb

Cechy podzielności liczb ułatwiają znalezienie dzielników, zwłaszcza dużych liczb. Sprowadzają one rozwiązanie problemu podzielności liczb do prostych działań na niewielkich liczbach.

  1. Podzielność liczby przez 2

    Liczba jest podzielna przez 2, gdy jej ostatnią cyfrą jest 0, 2, 4, 6 lub 8.

    Przykład:

    • 1896319128 → liczba jest podzielna przez 2, ponieważ ostatnią cyfrą jest 8.
       
  2. Podzielność liczby przez 3

    Liczba jest podzielna przez 3, gdy suma jej cyfr dzieli się przez 3.

    Przykład:

    • 7981272 → liczba jest podzielna przez 3, ponieważ suma jej cyfr (7+9+8+1+2+7+2=36) dzieli się przez 3.
       
  3. Podzielność liczby przez 4

    Liczba jest podzielna przez 4, gdy jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4.

    Przykład:

    • 21470092816 → liczba jest podzielna przez 4, ponieważ jej dwie ostatnie cyfry tworzą liczbę 16, a liczba 16 jest podzielna przez 4.
       
  4. Podzielność liczby przez 5

    Liczba jest podzielna przez 5, gdy jej ostatnią cyfrą jest 0 lub 5.

    Przykład:

    • 182947218415 → liczba jest podzielna przez 5, ponieważ jej ostatnią cyfrą jest 5.
       
  5. Podzielność liczby przez 6

    Liczba jest podzielna przez 6, gdy jednocześnie dzieli się przez 2 i 3.

    Przykład:

    • 1248 → liczba jest podzielna przez 6, ponieważ dzieli się przez 2 (jej ostatnią cyfrą jest 8), a także dzieli się przez 3 (suma jej cyfr 1+2+4+8=15 jest liczbą podzielną przez 3).
       
  6. Podzielność liczby przez 9

    Liczba jest podzielna przez 9 , gdy suma jej cyfr jest podzielna przez 9.

    Przykład:

    • 1890351 -> liczba jest podzielna przez 9, ponieważ suma jej cyfr (1+8+9+0+3+5+1=27) jest podzielna przez 9.
       
  7. Podzielność liczby przez 10

    Liczba jest podzielna przez 10, gdy jej ostatnią cyfra jest 0.

    Przykład:

    • 1920481290 → liczba jest podzielna przez 10, ponieważ jej ostatnią cyfrą jest 0.
       
  8. Podzielność liczby przez 25

    Liczba jest podzielna przez 25, gdy dwie ostatnie cyfry tworzą liczbę podzielną przez 25.

    Przykład:

    • 4675 → liczba podzielna przez 25, ponieważ jej dwie ostatnie cyfry tworzą liczbę 75, a 75 jest podzielne przez 25
       
  9. Podzielność liczby przez 100

    Liczba jest podzielna przez 100, gdy jej dwie ostatnie cyfry to zera.

    Przykład:

    • 12491848100 → liczba jest podzielna przez 100, ponieważ jej dwie ostatnie cyfry to zera.
Zobacz także
Udostępnij zadanie