Matematyka

MATeMAtyka 2. Zakres podstawowy i rozszerzony (Zbiór zadań, Nowa Era)

Oblicz granicę ciągu (an), korzystając z twierdzenia... 4.17 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 2 Klasa
  3. Matematyka

Oblicz granicę ciągu (an), korzystając z twierdzenia...

11
 Zadanie
12
 Zadanie
13
 Zadanie
14
 Zadanie
15
 Zadanie

16
 Zadanie

17
 Zadanie
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
Informacje
Autorzy: Joanna Czarnowska, Jolanta Wesołowska, Wojciech Babiański, Lech Chańko
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Obliczanie granic ciągów
W niniejszej sekcji zajmiemy się obliczaniem granic ciągów korzystając z twierdzeń o granicach ciągów i granic znanych nam ze wcześniejszych lekcji.

Krótkie przypomnienie:

Fakt 1: granica ciągu w nieskończoności $$a_n = {1}/{n}$$ to $$0$$.

Fakt 2: Twierdzenie o granicach ciągów mówi, że jeśli mamy trzy ciągi: na przykład $$(a_n)$$, $$(b_n)$$ i $$(c_n)$$ i $$c_n= a_n + b_n$$, a $$lim↙{ → ∞} a_n = A$$ i $$lim↙{n → ∞} b_n = B$$, to $$lim↙{n → ∞} c_n = A+B$$. Oczywiście nie musi być tam dodawania: równie dobrze może być odejmowanie, mnożenie lub dzielenie.

To niepozorne i w miarę logiczne twierdzenie (skoro dodajemy każde dwa wyrazy dwóch ciągów i tworzymy z tych sum trzeci ciąg, a poprzednie zbiegały do jakichśtam granic, to ten będący sumą zbiega do granicy będącej sumą tamtych), to bardzo przydaje się w normalnych zastosowaniach: nie trzeba wtedy liczyć wszystkiego z definicji, a wystarczy po prostu skorzystać z granic znanych ciągów.

Inaczej mówiąc: jeśli mamy ciąg, którego wyrazy możemy w prosty sposób otrzymać z wyrazów znanych nam już ciągów (dodając je, mnożąc itp), to możemy próbować obliczyć granicę nowego ciągu korzystając jedynie z granic tamtych.

Dla przykładu obliczmy granicę w nieskończoności ciągu

$$b_n = {1}/{n^2}$$.

Zauważmy, że $$b_n = {1}/{n^2} = {1}/{n} × {1}/{n}$$. Skoro $$lim↙{n → ∞} b_n = a_n×a_n$$, to korzystając z twierdzenia o granicach ciągów otrzymujemy $$lim↙{n → ∞} b_n = lim↙{n → ∞} b_n = a_n × lim↙{n → ∞} a_n = 0×0 = 0$$

Obliczmy granicę innego ciągu:
$$p_n = {n^3 - 3n^2 + 2}/{2n^3 + 100n - 10}$$

Jest to bardzo często spotykany typ ciągów.

Ponieważ na razie zarówno mianownik, jak i licznik dążą do nieskończoności i nie da się tego stwierdzić od razu, musimy doprowadzić wzór do postaci, z której będziemy mogli wyodrębnić ciągi, których granice już znamy.

Podzielnmy więc obie strony ułamka przez $$n^3$$ - największą potęgę $$n$$ występującą we wzorze. Otrzymujemy:

$$p_n = {1 - 3{1}/{n} + 2{1}/{n^3} }/{2 + 100{1}/{n^2} + 10{1}/{n^3}}$$

Z tej postaci możemy już powiedzieć, do czego dąży każdy składnik:

1) Granicą $$1$$ i $$2$$ są po prostu $$1$$ i $$2$$.
2) Granicami wszystkich pozostałych ułamków są zera - dla $${1}/{n^2}$$ pokazywaliśmy to w poprzednim przykładzie.

Z twierdzenia o działaniach artytmetycznych na granicach możemy więc powiedzieć, że:

$$lim↙{n → ∞} p_n = lim↙{n → ∞} {1 - 3{1}/{n} + 2{1}/{n^3} }/{2 + 100{1}/{n^2} + 10{1}/{n^3} } = {(lim↙{n → ∞} 1) - (lim↙{n → ∞} 3{1}/{n}) + (lim↙{n → ∞} 2{1}/{n^3})}/{(lim↙{n → ∞} 2) + (lim↙{n → ∞} 100{1}/{n^2}) + lim↙{n → ∞} (10{1}/{n^3})} =$$
$$= {1 - 3×0 + 2×0}/{2 + 100×0 + 10×0} = {1}/{2}$$
Działania na granicach
Analogicznie do granic ciągów, na granicach funkcji także możemy wykonywać działania artytmetyczne - na przykład jeśli granicą funkcji $$f(x)$$ jest $$A$$, a granicą $$g(x)$$ - $$B$$, to granicą funckcji $$h(x) = f(x) + g(x)$$ będzie po prostu $$A+B$$.
Udostępnij zadanie